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1. INTRODUCTION

Silicon nitride as one of the most practical en-
gineering ceramics has been widely applied as a 
high-temperature structural material. Several ad-
vantages such as high resistance against thermal 
shock and corrosion, high strength, lower density 
in comparison with a metallic component, and bio-
compatibility make it popular as a structural material 
in cutting tools, gas turbine, diesel engine, precision 
bearings and biomedical applications [1–5]. Sever-
al methods such as hot-pressed silicon nitride (HP-
SN), hot isostatic pressed silicon nitride (HIP-SN), 
sintered silicon nitride (SSN),  gas partial sintered 
silicon nitride (GPS-SN), reaction bonded silicon 
nitride  (RBSN),  and sintered reaction bonded sili-
con (SRBSN) have been introduced for producing 
silicon nitride samples [6]. In this study, the RBSN 
method is investigated. 

RBSN, which is also known as the direct nitrida-
tion of silicon, is one of the most economical meth-
ods to produce the silicon nitride for near net shape 
formation in comparison with the other methods. Al-
though the RBSN method is cost-effective, it takes 
time to complete nitriding. In this method, Si3N4 is 
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formed by reacting of nitrogen and silicon at tem-
perature between 1250 to 1400oC. For temperatures 
higher than 1400oC, reaction transfers into the liq-
uid phase and consequently, different mechanisms 
are operative. Formation of silicon nitride occurs in 
three kinetic stages. In the first stage, kinetic of re-
action is approximately zero because it takes time to 
initiate the nucleus of silicon nitride. At the second 
stage, nitridation is progressed by a reaction between 
silicon and nitrogen-based on different mechanisms 
of reactant diffusion in the inter-particle pores. It 
should be stated that the most progress in reaction 
occurs in this stage. At the final stage, diffusion paths 
into the core of particles are blocked by the reaction 
products; therefore, reaction gas should find a new 
path through reaction product to complete nitrida-
tion of silicon pellet. As a consequence, the kinetic 
of nitridation is decreased.

 In the entire possible reaction temperature range 
(more than 1250 oC) [6], thermodynamics shows 
that the reaction is exothermic. Therefore, reaction 
progress is not limited thermodynamically. As the 
reaction progresses, both chemical reaction and sin-
tering in silicon powder cause changes in particles 
microstructures. This circumstance changes pore 
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density and affects reaction kinetics. Effective diffu-
sivity of the reaction gas is directly dependent on the 
tortuosity of silicon pellet. Therefore, the effective 
diffusivity of gas changes as the reaction progress-
es. Several parameters like physical properties of 
silicon pellet (e.g. size, density, pore size, and pore 
type) and gas properties (composition, flow rate, and 
pressure) can affect reactant diffusivity. A flexible 
model that can effectively consider all these parame-
ters is one of the most important issues in simulation 
and prediction of silicon nitridation kinetic behavior.

Several efforts have been made to model the 
kinetics of reaction [7–15]. Most of these models 
have been developed to illustrate gas-solid reactions 
(without the presence of a catalyst) (e.g.[7], [16–
19]). Models are classified into three main groups: 
pore model [17], particle-pellet model [19], and vol-
ume reaction model [16]. The sharp interface mod-
el (SIM) [7], [16] has been introduced as a specific 
condition for gas-solid reactions for the cases that 
the primary particles are solid and nonporous.  The 
main idea behind this assumption is that the reaction 
occurs in the sharp interface of reacted and unreact-
ed solids while the reaction takes place in the whole 
pellet in case of the porous particles. SIM conditions 
could be applied to both particle-pellet and pore 
models. 

Several models have been developed based on 
SIM conditions in the last decades. In particular, 
Chang et al.[9] developed a model which was based 
on the diffusion-controlled system. They assumed 
that grains in the pellet are non-porous. They present 
a linear relationship between conversion percentage 
and time. Li et al. [8] also considered different paral-
lel reaction mechanisms and used them to develop a 
predictive model for conversion percentage. Ku and 
Gregory [20] considered the effect of particles size 
variations in their mathematical model. On the other 
hand, the presence of H2 and O2 in the reactant gas 
makes the prediction of reaction kinetic more com-
plicated.  In this regard, Dervisbegovic and Riley 
[21] developed a two-zone model for the reaction 
of silicon powder compact in the nitrogen/hydrogen 
atmosphere. 

In general, there are different mechanisms that 
control the kinetics of silicon nitridation during the 
reaction. Mechanisms involved in the initial stage 
can be also completely different from the final stage.  
Furthermore, in the special duration of the reaction, 

several mechanisms may act in parallel. In this re-
gard, the mentioned analytical models cannot con-
sider all the complex mechanisms involved during 
the reaction. As a result, there are always remarkable 
scatter between experimental results and the predic-
tions of mentioned models during the entire reaction 
or only on a segment of the reaction. On the other 
hand, several influencing parameters may have ef-
fect on the reaction kinetic which make approach-
ing to an accurate solution too hard and time-taking. 
Tackling such problem, a soft computational method 
based on regression-based machine learning that can 
relate the input(s) to the target of the problem can 
be of great advantage while facing with this kind of 
case with considerable complexity and non-linearity.

In recent decades, machine learning approaches 
such as Artificial Neural Networks (ANNs) and AN-
FIS as the most common soft computing methods 
have been employed to overcome these limitations 
in material science (e.g.[22–25]). Results confirmed 
the superior performance of data mining-based ap-
proaches. However, the ANN and ANFIS models do 
not give enough insight into the generated models 
and are not as easy to use as the empirical formulas. 
Among the soft computing methods, the GMDH net-
work is known as a self-organized method to model 
and discover the behavior of unknown or complicat-
ed systems based on given input-output data points 
(Ivakhnenko 1971 [26]; Ivakhnenko and Ivakhnen-
ko 2000 [27]). The main objective of this study is 
to investigate the efficiency of the GMDH network 
for predicting the kinetics of silicon nitridation. The 
main advantage of GMDH method in comparison 
with methods like ANN is that the dependencies 
between input parameters and output parameter are 
represented in parametric form as an equation while 
these dependencies are hidden within neural net-
work structures in ANN method. To develop a sim-
ple and efficient predictive model based on GMDH, 
a comprehensive database from literature containing 
2186 experimental results is applied. The developed 
GMDH model related the conversion percentage of 
silicon to the time, temperature, nitrogen percentage, 
pellet size, and silicon particle size. The developed 
GMDH results are also compared with the two most 
common existing models through statistical error 
indicators. The relative importance of significant 
parameters dealing with conversion percentage is 
also investigated through sensitivity analysis. The 
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robustness of the proposed GMDH model is also 
verified through a parametric analysis.

2. METHODOLOGY

GMDH has been introduced as one of the effec-
tive machine learning methods to detect the nonlin-
ear patterns latent in the database. It was first intro-
duced by Ivakhnenko in 1971 [26]. The nonlinear 
relationship between input variables and response 
ones are presented as polynomial forms. In fact, the 
algorithm chooses the most proper quadratic poly-
nomial term by selecting the best coefficients for 
considered polynomial terms based on two indepen-
dent variables at each layer. The GMDH algorithm 
applies two sets of data, i.e. training and validation, 
to develop the model. The best outputs are obtained 
based on the best combinations of independent input 
variables. To achieve this, a complicated form of the 
Volterra functional series which is known as Volterra 
– Kolmogorow polynomial is applied to obtain the 
best correlation between the response value and the 
multi-input variables as follows: 

Where,  Nv is the number of independent vari-
ables. The matrix of Input data which consists 
of Nv independent variables and N response ob-
servations is presented in Eq. 2. The left matrix 
includes response observations and the right one 
holds Nv independent variables. 

The quadratic polynomial term for two inde-
pendent variables is presented in Eq. 3. For Nv 
input variables, the 

2
vN 

 
 

 quadratic terms can be 
developed as follows:

The regression method is used to obtain the 
coefficients of quadratic polynomial terms. To ob-
tain the best fit between prediction and real out-
put observed, the least-squares method is applied. 
The main objective of the GMDH method is to 
minimize the square of deviation between the ac-
tual outputs and predicted ones as:  

In Eq. 4. ˆ iy is the predicted output. 

3. MODEL DEVELOPMENT

In this study, a predictive model based on GMDH 
method is developed to estimate the conversion per-
centages of Si to Si3N4 in the following reaction:  

To develop the model, a comprehensive da-
tabase obtained from the experimental results of 
Chang et al. is used. The total database consists 
of 2186 data points. Several effective parameters 
including time, temperature, pellet size, nitrogen 
percent, and silicon particle size are considered as 
input variables. These parameters are known as the 
most important parameters which affect gas diffu-
sivity. The reactions such as reaction. (5) are clas-
sified as a diffusion-controlled reaction, which their 
kinetics are dependent on reactant gas diffusivity. 
Therefore, the mentioned parameters are selected as 
predictive variables for the estimation of the con-
version percentage. The ranges of input and output 
variables are presented in Table 1. The statistical in-
dexe including minimum, maximum, average, and 
standard deviation are presented for each parameter. 
The selected ranges for input variables cover prac-
tical ranges which the reaction often occurs. In fact, 
to progress the reaction, special physical conditions 
can be reached by selecting the values of input vari-
ables in the mentioned ranges. 

For more illustration, the histograms of input 
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The regression method is used to obtain the coefficients of quadratic polynomial terms. To 

obtain the best fit between prediction and real output observed, the least-squares method is 

applied. The main objective of the GMDH method is to minimize the square of deviation

between the actual outputs and predicted ones as: 
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In Eq. 4. ˆ iy is the predicted output. 

3. Model Development

In this study, a predictive model based on GMDH method is developed to estimate the 

conversion percentages of Si to Si3N4 in the following reaction:

3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠𝑠𝑠) +  2𝑁𝑁𝑁𝑁2 (𝑔𝑔𝑔𝑔)  →  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3𝑁𝑁𝑁𝑁4(𝑠𝑠𝑠𝑠) (5)

To develop the model, a comprehensive database obtained from the experimental results of 

Chang et al. is used. The total database consists of 2186 data points. Several effective parameters 

including time, temperature, pellet size, nitrogen percent, and silicon particle size are considered 

as input variables. These parameters are known as the most important parameters which affect 

gas diffusivity. The reactions such as reaction. (5) are classified as a diffusion-controlled

reaction, which their kinetics are dependent on reactant gas diffusivity. Therefore, the mentioned 

parameters are selected as predictive variables for the estimation of the conversion percentage. 

The ranges of input and output variables are presented in Table 1. The statistical indexe 

including minimum, maximum, average, and standard deviation are presented for each 

parameter. The selected ranges for input variables cover practical ranges which the reaction often 
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and output variables for different ranges are shown 
in Fig.1.  It should be noted that the developed mod-
el is more reliable in ranges in which data points 
are more concentrated. In this study, a new param-
eter is introduced to consider the effect of silicon 
particle size. This parameter includes five ranges 
of particle size (PS=1 (particle size<38 µm), PS=2 
(38 µm <particle size<45 µm), PS=3 (45 µm <par-
ticle size<53 µm), PS=4 (53 µm <particle size<63 
µm), and PS=5 (particle size>63 µm).

Overfitting is one of the most important prob-
lems which occurs during the training of the used 
machine learning methods. Benzhaf et al. (1998) 
introduced a new method in order to reduce overfit-
ting problem and enhance the generalization capa-
bility of the developed model based on these meth-
ods. In this method, primary input data sets are 
randomly divided into train data and test data sub-
sets. The training data is used to develop a new ba-

sic model while the test data is used to examine the 
performance of the developed model. To achieve 
the best and more generalized predictive model, 
the performances of the trained model should be 
the same for both training and testing datasets. To 
achieve a reliable prediction model several data 
groups are examined. To reach a reliable model, 
the maximum, minimum, mean and standard devi-
ations of parameters should reach some stability in 
the training and testing data subsets. In this study, 
2186 data points are used to develop the final mod-
el. Therefore, 80% of data (1749 data points) are 
taken for the training set and the remaining 20% of 
data (437 data points) used for testing data set.   

After data divisions, the training data was ap-
plied to the GMDH algorithm and the following 
equations are derived from the learning step for es-
timation of conversion percentage as:
4. EXPERIMENTAL PROCEDURE

Table 1. Influencing variables and statistic data

Parameter Symbol MIN MAX Average Standard deviation

Time [min] t 0.005 239.8 101.76 72.83

Temperature [oK] T 1448 1648 1604.12 48.96

Pellet size [mm] PeS 3 12 5.06 2.45

Nitrogen percent [%] NP 10 100 85.77 22.51

Silicon particle size [µm] SP 1 5 1.54 1.15

Conversion percent [%] CP 0.117 36.4 15.97 9.08

Layer 1 (Number of Neurons=4):
5 5 2 2

6 -260 0.29 0.25 - 3.7 10 -8.1 10 - 0.00044X T t tT T t− −= + + × ×
2 2

7 -2.9 0.057 0.11 0.00094 0.0002 - 0.00043X NP t tNP NP t= + + + +

2 2
8 0.47 4.2 0.19 - 0.0038 - 0.81 - 0.00042X PS t tPS PS t= + +

5 2 5 2
9 3.7 - 0.032 0.00073 9.1 10 - 2.1 10X NP T TNP NP T− −= + + + × ×

2 2
11 7 6 6 7 7 6-1.7 0.55 0.7 0.081 - 0.043 - 0.042X X X X X X X= + + +

2 2
12 9 8 8 9 9 8-1.4 - 0.51 0.33 0.064 0.026 - 0.0093X X X X X X X= + + +

2 2
13 9 6 6 9 9 6-4.2 0.5 0.42 0.069 - 0.025 - 0.017X X X X X X X= + + +

2 2
16 13 12 12 13 13 12-0.83 0.89 0.31 0.061 - 0.061 - 0.0067X X X X X X X= + + +

2 2
17 12 11 11 12 12 11-1.1 0.7 0.49 - 0.054 0.038 0.0088X X X X X X X= + + + +

2 2
17 16 16 17 17 16 (%) -0.61- 0.35 1.4 - 0.79 0.38 0.41CP X X X X X X= + + +

Layer 2 (Number of Neurons=3): 

Layer 3 (Number of Neurons=2): 

Layer 4 (Number of Neurons=1):

A. Mirhabibi, et. al
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The material used for this research was 
99.995% silicon powder (D50 = 4.76 µm, Dong-
Fang Ref source, China) that was quantitatively 
characterized by spectrographic analysis before 
experimental tests. Other additional elements of 
the powder was consisted of <0.0001% Ca and 
0.0002% Mg. In addition, the particle size of 
silicon powder was measured by PSA (Particle 
Size Analyzer)(MAL100229, MALVEM) to set 
the initial conditions of the material. The green 
powder was compacted in stainless steel die at a 
pressure of 0.6 MPa to create a dense cylinder of 

silicon shown in Fig.2. The compacted precursor 
was then cut into spherical pellets in order to min-
imize the touching distance between the sample 
and crucible.

Fig.2. compacted pure silicon after pressing 

Fig. 1. Histograms of output and input variables
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Taking the feedback of results of the predic-
tion model into account, the completion time of 
the nitridation reaction was estimated and hence, 
20 different time duration was chosen to calculate 
silicon nitridation percentage at 1573o k.

In order to perform the nitridation process of 
silicon, a tube electrical furnace was used. Since 
the oxygen decays the rate of nitridation by the 
unwanted formation of a thin layer of silicon di-
oxide, a small amount of hydrogen was purged 
into the nitrogen to remove the mentioned thin 
film. In this regard, 5 vol. % H2 - 95vol. % N2  
composition was used as the reaction gas during the 
process. Pellet was accommodated in the tube fur-
nace and held there for a specific time period while  
exposing to reaction gas at 1573ok. The procedure 
was carried out for 20 different time periods and  
reaction kinetics in terms of nitridation percentage 
was measured by pellet weight change and record-
ing its increase after reaction completion.

4.1. Measuring of Nitridation Percentage

Due to the weight increase after reaction with 
nitrogen gas, the stoichiometric relations based 
on Equations (7) can be written to express this 
phenomenon as below. Also, experimental results 
are summarized in Table 2.

In abovementioned equations (7 - 12), X  rep-
resents the reaction percentage, ΔW is the weight 
increase, W0  is the pellet initial weight, MSi is 
the  molecular weight of silicon and MN2 is the 
molecular weight of nitrogen

Table. 2. Experimental results 

Time(min) W0(g) Δ W(g) X(%)

12 0.438 0.033 11.30137

25 0.304 0.031 15.29605

37 0.307 0.031 15.14658

50 0.208 0.022 15.86538

62 0.325 0.04 18.46154

75 0.371 0.045 18.19407

87 0.304 0.038 18.75

100 0.299 0.04 20.06689

112 0.271 0.036 19.9262

125 0.339 0.048 21.23894

137 0.382 0.052 20.41885

150 0.152 0.02 19.73684

162 0.134 0.02 22.38806

175 0.266 0.04 22.55639

187 0.31 0.045 21.77419

200 0.317 0.05 23.65931

212 0.338 0.054 23.9645

225 0.289 0.044 22.83737

237 0.315 0.05 23.80952

250 0.379 0.062 24.53826
 
5. RESULT AND DISCUSSIONS

In this study, the kinetics for the formation of 
Si3N4 was investigated using both experimental 
and soft computational approach and the results 
were compared to one another for verification of 
the proposed model.  In addition, the validated 
model by experimental observations was com-
pared with the work done by others and improved 
accuracy and superposition was seen for describ-
ing the kinetics of Si3N4 formation via reaction 
bonded method.

Results of XRD patterns and SEM micro-
graphs demonstrate the extent of the reaction and 
morphology of formed phases. Furthermore, the 
performance of the developed model is evaluat-
ed through statistical error parameters. Then, the 
most important parameters in the estimation of 
conversion percentage are determined by using 
sensitivity analysis.  To validate the model further, 

2 3 43  2  Si N Si N+ =

( )4 3 4Weight of N  in Si NW g∆ =

2

3 42 N Si N
N

W mol mol
M
∆

= =

2

.3
2 Si

N

W mol
M
∆

=

2

.3 .
2 Si Si

N

W M g
M

 ∆
=  

 

2 0

3
2

Si

N

WMX
M W

∆
=
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the parametric analysis is done to ensure that the 
results of the developed model are in line with the 
physical concept latent in the problem.

5.1. Microstructure Analysis 

The microstructure of nitrided pellet at 1573 
ok after primary preparation was characterized by 
Scanning electron microscopy presented in Fig.3. 
Formation of α-Si3N4 is believed to have occurred 
through a vapor-liquid-solid (VLS) mechanism, 
or simply through a chemical vapor deposition 
(CVD) process between Si (g) and N2 (g) reactants 
that could be considered as the dominant mode of 
nitride formation under flowing nitrogen condi-
tion. The presence of impurities may enhance the 
formation of α-Si3N4. β-Si3N4 will also accompa-
ny the growth of the nitride layer. This will lead to 
the nitride forming through a gas-solid reaction in 
silicon surface due to diffusion of atomic nitrogen 
along β, or in the presence of liquid phase which 
may stimulate its production.

Fig.3. the microstructure of nitrided pellet at 1573ok

The x-ray diffraction pattern (Fig.4) of prod-
uct reveals that the reacted silicon pellet contained 
unreacted silicon, and α-Si3N4.  There was no sign 
of silicon dioxide (SiO2) and silicon oxynitride 
(Si2N2O) peaks in the pattern and the proportion 
of a-Si3N4 was much higher than that of β-Si3N4. 
As can be seen in Fig.4, with the progress in the 

reaction, there was a decrease in the intensity of Si 
peaks which was accompanied with an increase in 
the intensities of both α and β phases. 

Fig. 4. XRD pattern of three pellets which nitrided for 
a)250, b)100, c)25 min. 

5.2. Performance Analysis 

To evaluate the performance of the developed 
GMDH model, four statistical error parameters 
including bias, root mean square error (RMSE), 
correlation coefficient (R) and coefficient of de-
termination (R2) are applied. The equations for 
these parameters are as follows: 

1
( )

N

i i
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P O
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−
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∑

( )2
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i i
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where, Oi is the measured value, Pi stands for pre-
diction values; N is the number of data points, Om 
is the mean value for observation and Pm is the 
mean value of prediction.

The results of the developed GMDH model 
and the actual experimental observations for train-
ing and testing datasets are depicted in Figs. 5 (a) 
and (b), respectively. Furthermore, the errors and 
the best fitted normal distribution on these errors 
are also shown in these figures. As shown, there 
are good agreement between the predicted con-
version percentage by GMDH model and the ob-
served data for both training and testing datasets. 
This indicates that the generalization capability 
of the developed model for unseen data points in 
the range of training dataset is acceptable. On the 
other hand, the errors of a good predictive mod-
el should follow a certain trend and distribution 
[28]. This feature can be useful for considering 
uncertainty in a predictive or design model. As 
indicated in Figs. 5 (a) and (b), the errors of the 
developed GMDH model approximately follow a 
normal distribution for both training and testing 
datasets. Therefore, the uncertainty of the GMDH 
model can be easily calculated by considering a 
random parameter with a normal distribution. As 
it was mentioned previously, four statistical error 
parameters such as Bias, RMSE, R, and R2 are 
used. 

To quantitatively evaluate the performance of 
the developed model, the statistical error parame-
ters are presented in Table 3 for both training and 
testing datasets. In fact, the R parameter indicates 
the correlation between predicted and measured 
values. If the R-value is more than 0.8, it shows 
that there is a strong correlation between observed 
and predicted values. However, R sometimes may 
not necessarily indicate better model performance 
due to the tendency of the model to deviate to-
wards higher or lower values, particularly when 
the data range is very wide and most of the data are 
distributed about their mean values. Therefore, in 
this study, the coefficient of determination, R2, is 
used because it can give the unbiased estimate and 
maybe a better measure for model performance. 
In addition, Bias and RMSE parameters should be 
close to zero for having accurate results.

 According to Table 3, the GMDH model has 
the same performance for both training and testing 

datasets. The Bias and RMSE values are the same 
and close to zero. It should be noted that Bias val-
ues for training and testing datasets are -0.01 and 
-0.11, respectively. This indicates that the GMDH 
model slightly underestimates the conversion 
percentage which makes the model conservative 
in the estimation of this parameter. The GMDH 
model, respectively, with R=0.966 and R=0.965 
for training and testing datasets, satisfies the crite-
rion for the strong correlation between predicted 
and observed outputs (R > 0.8) [29]. In addition, 
the R2 values are also close to 1 and have accept-
able values for both training and testing datasets.       

To schematically illustrate the correlation 
between observed and predicted outputs, com-
parisons between experimental results and mod-
el prediction for testing, training, and the whole 
datasets are shown in Fig. 5. In this figure, the best 
linear regression lines between real and predicted 
output are also shown. It is clear from this figure 
that the fitted linear equations are nearly the same 
as the optimal line of y=x. In general, the results 

Fig. 5. Results of predicted model and experimental 
observations a)train, b)test

A. Mirhabibi, et. al
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indicates that the developed model has a reliable 
and sufficient predictive ability. The model has to 
get the ability to get general knowledge from a 
set of data by synchronization of weights and bias 
which is called training. In the case of over fitting, 
the network memorizes some local rules instead 
of realistic pattern recognition which yields un-
wanted chaos in testing phase and finally, inde-
cent modeling.

To further evaluate the performance of the 
developed GMDH model, its prediction is com-
pared with two common previous models put for-
ward by Li et al. (1997) and Chang et al. (2000). 
Li et al. (1997) and Chang et al. (2000) are two 
well-known general models for the prediction of 
kinetics of silicon direct nitridation and several 
effective parameters and mechanisms that control 
the reaction progress are included in their models. 
Therefore, the mentioned models can be applied 
as reliable references to evaluate the developed 

GMDH model. To compare the performances of 
the models, temperature and nitrogen percent-
age are selected as 1573ok and 95%, respective-
ly. These values for temperature and gas concen-
tration are the most common reaction conditions 
which are often used to ensure the occurrence of 
the reaction.  Based on comparison performed 
between the results of two mentioned models, a 
cross-validation graph was developed using es-
tablished GMDH model and real experimental 
data (Fig. 7). As shown, both models of Li et al. 
(1997) and Chang et al. (2000) perform well at 
initial times of reaction and their predictions are 
in agreement with experimental results. Howev-
er, their predictions are remarkably overestimated 
after the time of 75 min. According to this figure, 
in general, the developed GMDH model showed 
a remarkable agreement with experimental results 
for the whole duration of reaction and outper-
formed the other models.   

Table 3. Validation of the proposed model by Statistical error measures

Item Formula Condition Training data set Testing data set
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Fig. 6. Comparison between predicted outputs and experimental results
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5.3. Sensitivity Analysis

To determine the most important parameters 
in the estimation of conversion percentage, a sen-
sitivity analysis (ST) was performed. To achieve 
this, the Gamma Test (GT) is applied. GT is a 
way to show the degree of an input efficacy on 
the model outputs. It is often done in a model 
which is multivariable. In general, selecting the 
best combination of input variables is one of the 
most important concerns in the modeling process 
of intelligent approaches such as GMDH [30]. To 
illustrate the GT analysis more , suppose the fol-
lowing set as:

Where, mx R∈  is the input vector (m is the 
number of input variables), y R∈  is the out-
put vector, and M represents the number of ob-
servations recorded in the experimental study. In 
GT analysis, the relationship between input and 
output variables by considering uncertainty and 
errors involved in the modeling process can be 
stated as: 

Where, f is a smooth function and r is a noise 
variable with a random nature. In the first step, the 
GT calculates the kth nearest neighbor distances 
for each Xi vector (N[i,k]). Then, the mean square 
distance to the kth nearest neighbor ( ( )M kδ ) and 

the corresponding gamma function of the output 
variable ( ( )M kg ) are calculated as follows:

where, p is the nearest neighbors. At the final step, 
the relationship between input and output vari-
ables is estimated based on a linear regression 
equation as follows: 

In Eq. (20), the y-intercept represents the val-
ue of gamma and the Gamma value close to zero 
indicates that the performance of the model is bet-
ter. The gradient of the mentioned linear equation 
represents the complexity of the model (the steep-
er slope, the more complex model). In Eq. (21),

2 ( )yσ  is the variance of the output variable (y) 
and ratioV is a parameter that varies between zero 
and 1. The value of ratioV  close to zero indicates 
that there is a high degree of accuracy in the pre-
diction of output variables by the developed model. 

To obtain the order of importance and effec-
tiveness of considered input parameters, six sce-
narios are considered. In the first scenario, all in-
put parameters are used in the GT analysis. In the 
next scenarios, all input parameters are excluded 
one by one from the GT analysis. The variations in 
gamma parameters such as ratioV are calculated af-
ter removing each parameter. The more variations 

ratioV indicate the more important of the removed 
parameter in the estimation of the conversion per-
centage.  In fact, the value ratioV  indicates the de-
viation of predictions from the observed outputs.

 Results of GT analysis are summarized in Ta-
ble 4. To better illustrate the results of GT anal-
ysis, the values of ratioV  different scenarios are 
shown in Fig. 8. According to Table 4, time, ni-
trogen percentage, and reaction temperature are 
the most effective parameters in the estimation 
of conversion percentage.  In fact, these results 
are also in agreement with the physics of the 
reaction. In general, silicon nitride is formed in 
two phases of α-Si3N4 and β-Si3N4 [31]. Forma-

Fig. 7. comparisons between the results of Li et al. (1997) 
and Chang et al. (2000) and the developed GMDH models
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tion of two phases happens in separate diffusional 
mechanisms, which are slow and can be affected 
by different variables. Therefore, reaction time 
plays an important role which gives a chance to 
reactants to diffuse through product shell around 
the particle. Furthermore, the results of Chang et 
al. (2000), Li et al. (1997), and experimental data 
indicate that reaction time is directly related to 
reaction progress. Therefore, the GT analysis has 
accurately determined the time parameter as the 
most important parameter.   

Fig. 8. Results of Gamma Test (the values of ratioV  for 
different scenarios)

The GT analysis also detected the nitrogen 
percentage as the second important parameter. 
In fact, the density of silicon nitride nuclei on 
the reaction interface depends on the amount of 
adsorbed nitrogen (or silicon). The amount of 
adsorbed nitrogen is also affected by nitrogen 
pressure at the reaction interface. As the pres-
sure increases, the amount of adsorbed nitrogen 
increases at the interface. Higher pressures form 
more primary Si3N4 nuclei and increase the initial 
kinetic. Furthermore, high pressure makes diffu-

sion mechanisms faster by increasing the concen-
tration of nitrogen in the inter-particle pores. 

Diffusion, which plays as a controlling param-
eter in the rate determination of some reactions, is 
also very sensitive to the temperature. The mobil-
ity of diffuse reactant highly depends on the tem-
perature variable because of its high activation 
energy. Previous studies [8–10], [14], [32], [33] 
indicated that diffusion of nitrogen through the 
product shell is possible only if nitrogen decom-
poses into the atomic state. If there is no oxygen, 
hot surfaces are the only sources for producing 
the atomic nitrogen. Since nitrogen dissociation 
requires a lot of energy, diffusion is strongly de-
pendent on the temperature. Another words, it is 
possible that the reaction takes place in the vapor 
state. It means that the silicon vapor reacts with 
nitrogen. In the vapor state reaction, the tempera-
ture has the main role in producing enough sili-
con vapor pressure. In general, the results of GT 
analysis are in line with previous findings in the 
literature. 

5. 4. Parametric Analysis

To better validate the robustness of the devel-
oped model, a parametric analysis is performed 
to ensure that the results of the proposed GMDH 
model are in line with physical concepts of the 
reaction kinetics. The methodology of paramet-
ric analysis is based on the variation of the model 
results with changing in one variable while other 
variables are kept at their average values. As stat-
ed in the previous section, time, nitrogen percent-
age, and temperature were the most important pa-
rameters. Therefore, the effect of these parameters 
were investigated more by applying the paramet-
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Table 4. Results of Gamma Test analysis

Scenarios Unconsidered variable Gamma Gradient Standard Error V-ratio

1 Nothing 
(all inputs are considered) -4.45E-5 0.5853 6.6159E-5 -0.000178

2 Time 0.2250 0.0305 0.02945 0.90023
3 Temperature 0.0339 -0.4474 0.00172 0.1356
4 Pellet size 0.0079 0.3513 0.000706 0.03163
5 Nitrogen percentage 0.0682 -1.4864 0.00522 0.2731

6 Silicon particle size 0.01368 0.1730 0.0009 0.0547
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ric analysis.  The results of the parametric analysis 
are presented in Fig. 9. The variation of silicon 
conversion percentage with reaction duration for 
four different temperatures (T=1480, 1510, 1550 
and 1600 C) and four different nitrogen percent-
age (N2=85, 90, 95 and 100%) are shown in Fig. 
9 (a) and (b), respectively. As shown in this fig., 
the conversion percentage increases as the tem-
perature and nitrogen percentage increase and 
also the increasing effects of temperature and 
nitrogen percentage on conversion percentage in-
crease with the progress in the reaction. The in-
crease of conversion percentage with temperature 
and nitrogen percentage is due to the fact that the 
silicon nitridation is generally controlled by nitro-
gen diffusion, which it is also highly dependent on 
the reaction temperature and reactant concentra-
tion. Furthermore, at the initial time of reaction, 
silicon is directly exposed to reactant gas while 
the product shell seals the whole side of the pellet 
as the reaction progresses, and consequently, the 
diffusion of reactants could be more important. 
As a result, temperature and nitrogen percentage 
parameters which can be also have an effect on 
reactant diffusion show more influence on conver-
sion percentage at later times in comparison with 
initial stages. In general, it can be concluded from 
this figure that the developed GMDH model cor-
rectly captured these physical patterns.  It should 
be noted that the variations of silicon conversion 
percentage are more influenced by the nitrogen 
percentage in comparison with temperature pa-
rameter.  Similar observation is also reported in 

sensitivity analysis and previous studies [8]–[10], 
[13]–[15], [20], [32], [33].  

6. CONCLUSIONS

In the present study, an effective predictive 
model based on the group method of data handling 
(GMDH) is developed to estimate the kinetics of 
silicon nitride formation. Based on the results, ob-
tained the following remarks can be highlighted:
1.  The dependency of involved parameters 

upon conversion percentage such as time, 
temperature, nitrogen percentage, pellet size, 
and silicon particle size was studied using the 
proposed model.

2.  The accuracy of the developed GMDH mod-
el was evaluated through statistical error pa-
rameters and results of performance analysis 
indicated that model efficiency with R2=0.93 
as a remarkable estimation approach of con-
version percentage. 

3.  The kinetics of the reaction was expressed in 
terms of reaction rate at 1573 K and results 
were compared with two models of Chan 
(2000), Li (1997) and data of experimental 
measurement. Results showed that the previ-
ous models perform well in initial times of 
reaction while their predictions are remark-
ably overestimated after the time of 75 min. 
In summary, GMDH model showed superior 
predictability for the whole duration of the 
reaction.

4.  In order to establish a sensitivity analysis 

Fig. 9. The results of the parametric analysis for a) different temperatures b) nitrogen percentage 

A. Mirhabibi, et. al
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for prediction of conversion percentage, the 
Gamma Test (GT) is applied and it indicated 
that the time and nitrogen percentage are the 
most significant parameters. While tempera-
ture, silicon particle size, and pellet size are 
other less important parameters. 

5.  To verify the results of the developed and its 
accordance with physical concepts latent in 
the problem, the parametric analysis was also 
implemented which confirmed the robustness 
of the GMDH model in the development of 
physical patterns both in the present and the 
previous studies.

  
REFERENCES

1.  Yigiterol, F., Güllü, H. H., Bayraklı, Ö., Yıldız, 
D. E., “Temperature-Dependent Electrical Char-
acteristics of Au/Si3N4/4H n-SiC MIS Diode,” J. 
Electron. Mater., 2018, 47, 5, 2979–2987. 

2. Vieira, E. M. F., Ribeiro, J. F., Sousa, R., Silva, 
M. M., Dupont, L., Gonçalves, L. M., “Titanium 
Oxide Adhesion Layer for High Temperature An-
nealed Si/Si3N4/TiO x /Pt/LiCoO2 Battery Struc-
tures,” J. Electron. Mater., 2016, 45, 2, 910–916. 

3. Torchynska, T., Khomenkova, L., Slaoui, A., 
“Modification of Light Emission in Si-Rich Sil-
icon Nitride Films Versus Stoichiometry and Ex-
citation Light Energy,” J. Electron. Mater., 2018, 
47, 7, 3927–3933. 

4. Lu, Y., Yang, J., Lu, W., Liu, R., Qiao, G., Bao, 
C., “Synthesis of Porous Silicon Nitride Ceramics 
from Diatomite,” Mater. Manuf. Process., 2010, 
25, 9, 998–1000. 

5. Zhang, X. H., Chen, G. Y., An, W. K., Deng, Z. 
H., Liu, W., Yang, C., “Experimental Study of 
Machining Characteristics in Laser Induced Wet 
Grinding Silicon Nitride,” Mater. Manuf. Pro-
cess., 2014, 29, 11–12, 1477–1482. 

6. Somiya, S., Mitomo, M., Yoshimura, M., “SILI-
CON NITRIDE - Ceramic Research and Devel-
opment in Japan,” Mater. Manuf. Process., 1991, 
6, 4, 741–744. 

7. Carter, R. E., “Kinetic Model for Solid-State Re-
actions,” J. Chem. Phys., 1961, 34, 6, 2010–2015. 

8. Li, W. B., Lei, B. Q., Lindbäck, T., “A kinetic 
model for reaction bonding process of silicon 
powder compact,” J. Eur. Ceram. Soc., 1997, 17, 
9, 1119–1131. 

9. Chang, F.-W., Liou, T. H., Tsai, F. M., “The ni-
tridation kinetics of silicon powder compacts,” 
Thermochim. Acta, 2000, 354, 1–2, 71–80. 

10.  Wang, X. S., Zhai, G., Yang, J., Wang, L., Hu, 

Y. and et al., “Nitridation of Si(111),” Surf. Sci., 
2001, 494, 2, 83–94. 

11. Hara, Y., Shimizu, T., Shingubara, S., “Nitridation 
of silicon by nitrogen neutral beam,” Appl. Surf. 
Sci., 2016, 363, 555–559. 

12.  Hyuga, H., Zhou, Y., Kusano, D., Hiroa, K., Kita, 
H., “Nitridation behaviors of silicon powder 
doped with various rare earth oxides,” J. Ceram. 
Soc. Japan, 2011, 119, 1387, 251–253. 

13.  Li, Y. et al., “Study on Nitridation of Silicon Add-
ed With Amorphous Silicon Nitride,” Proceding 
of Nano and Micro Materials, Devices and Sys-
tems; Microsystems Integration. ASME, New 
York, USA, 2011, 435–438. 

14.  Zhu, X., Zhou, Y., Hirao, K., Lenčéš, Z., “Pro-
cessing and Thermal Conductivity of Sintered 
Reaction-Bonded Silicon Nitride. I: Effect of Si 
Powder Characteristics,” J. Am. Ceram. Soc., 
2006, 89, 11, 3331–3339. 

15.  Kim, M., Park, J., Lee, H.-W., Kang, S., “A cyclic 
process for the nitridation of Si powder,” Mater. 
Sci. Eng. A, 2005, 408, 1–2, 85–91. 

16.  Ishida, M., Wen, C. Y., “Comparison of zone-re-
action model and unreacted-core shrinking model 
in solid—gas reactions—I isothermal analysis,” 
Chem. Eng. Sci., 1971, 26, 7, 1031–1041. 

17.  Bhatia, S. K., “Analysis of distributed pore clo-
sure in gas-solid reactions,” AIChE J., 1985, 31, 
4, 642–648. 

18.  Ishida, M., Wen, C. Y., Shirai, T., “Comparison of 
zone-reaction model and unreacted-core shrink-
ing model in solid—gas reactions—II non-iso-
thermal analysis,” Chem. Eng. Sci., 1971, 26, 7, 
1043–1048. 

19.  Szekely, J., Evans, J. W., “A structural model for 
gas—solid reactions with a moving boundary,” 
Chem. Eng. Sci., 1970, 25, 6, 1091–1107. 

20.  Ku, W., Gregory, O. J., Jennings, H. M., “Com-
puter Simulation of the Microstructure Developed 
in Reaction-Sintered Silicon Nitride Ceramics,” J. 
Am. Ceram. Soc., 1990, 73, 2, 286–296. 

21. Dervisbegovic, H., Riley, F. L., “The influence of 
iron and hydrogen in the nitridation of silicon,” J. 
Mater. Sci., 1979, 14, 5, 1265–1268. 

22. Maleki, E., Maleki, N., “Artificial Neural Net-
work Modeling of Pt/C Cathode Degradation in 
PEM Fuel Cells,” J. Electron. Mater., 2016, 45, 8, 
3822–3834. 

23. Vafaeenezhad, H., Seyedein, S. H., Aboutalebi, 
M. R., Eivani, A. R., “Incorporating the Johnson–
Cook Constitutive Model and a Soft Computa-
tional Approach for Predicting the High-Tempera-
ture Flow Behavior of Sn-5Sb Solder Alloy: A 
Comparative Study for Processing Map Develop-

 [
 D

O
I:

 1
0.

22
06

8/
ijm

se
.1

7.
1.

77
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 m
at

h.
iu

st
.a

c.
ir

 o
n 

20
24

-1
2-

12
 ]

 

                            13 / 14

http://dx.doi.org/10.22068/ijmse.17.1.77
http://math.iust.ac.ir/ijmse/article-1-1326-en.html


90

ment,” J. Electron. Mater., 2017, 46, 1, 467–477. 
24.  Derebasi, N., Eltez, M., Guldiken, F., Sever, A., 

Kallis, K., Kilic, H., “Influence of Geometrical 
Factors on Performance of Thermoelectric Mate-
rial Using Numerical Methods,” J. Electron. Ma-
ter., 2015, 44, 6, 2068–2073. 

25. Reddy, N. S., Panigrahi, B. B., Ho, C. M., Kim, J. 
H., Lee, C. S., “Artificial neural network modeling 
on the relative importance of alloying elements 
and heat treatment temperature to the stability of 
α and β phase in titanium alloys,” Comput. Mater. 
Sci., 2015, 107, 175–183. 

26.  Ivakhnenko, A. G., “Polynomial Theory of Com-
plex Systems,” IEEE Trans. Syst. Man. Cybern., 
1971, 4, 364–378. 

27. Ivakhnenko, A. G. Ivakhnenko, G. A., “Problems 
of further development of the group method of 
data handling algorithms. Part I,” PATTERN Rec-
ognit. IMAGE Anal., 2000, 10, 2, 187–194. 

28. Kaveh, A., Bakhshpoori, T., Hamze-Ziabari, S. 
M., “Derivation of New Equations for Predic-
tion of Principal Ground-Motion Parameters us-
ing M5′ Algorithm,” J. Earthq. Eng., 2016, 20, 6, 
910–930. 

29. Smith, G. N., Probability and statistics in civil en-
gineering. Collins, London., UK, 1986, 158-186.

30. Kaveh, A., Hamze-Ziabari, S. M., Bakhshpoori, 
T., “Patient rule-induction method for liquefac-
tion potential assessment based on CPT data,” 
Bull. Eng. Geol. Environ., 2018, 77, 2, 849–865.

31.  Karakuş, N., Kurt, A. O., Toplan, H. Ö., “Pro-
duction of Sinterable Si3N4 from SiO2-Li2O-Y2O3 
Mixture,” Mater. Manuf. Process., 2012, 27, 7, 
797–801. 

32.  Pigeon, R. G., Varma, A., “Quantitative kinet-
ic analysis of silicon nitridation,” J. Mater. Sci., 
1993, 28, 11, 2999–3013. 

33.  Hughes, G. S., Mcgreavy, C., Merkin, J. H., 
“Transport effects in the manufacture of reac-
tion-bonded silicon nitride,” Can. J. Chem. Eng., 
1979, 57, 2, 198–202. 

A. Mirhabibi, et. al

 [
 D

O
I:

 1
0.

22
06

8/
ijm

se
.1

7.
1.

77
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 m
at

h.
iu

st
.a

c.
ir

 o
n 

20
24

-1
2-

12
 ]

 

Powered by TCPDF (www.tcpdf.org)

                            14 / 14

http://dx.doi.org/10.22068/ijmse.17.1.77
http://math.iust.ac.ir/ijmse/article-1-1326-en.html
http://www.tcpdf.org

