IN PRESS                   Back to the articles list | Back to browse issues page


XML Print


Abstract:   (261 Views)
Fe3O4 nanoparticles (NPs) with a continuous and mesoporous silica (m-SiO2) shell were synthesized using a one-step method, sourcing silica from rice husk ash (RHA). The rice husk was thermally treated to obtain ash, from which silica was extracted as sodium silicate and precipitated by pH reduction. This silica powder, combined with iron chloride salts, facilitated the synthesis of the core-shell NPs. Mint extract acted as a capping agent to prevent agglomeration, and CTAB (cetyltrimethylammonium bromide) was used to create the porous SiO2 shell. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) characterization investigated the structure, size, and shell formation. Coating integrity and suspension stability were assessed through Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS). DLS analysis showed a relatively narrow particle size distribution with an average hydrodynamic size of 72.6 nm. Small-angle X-ray scattering (SAXS) provided insights into the meso- and nanoscale structure, while BET and nitrogen adsorption-desorption isotherms confirmed the mesoporous nature of the silica shell. Magnetization measurements showed superparamagnetic behavior, with specific magnetization values of 57.9 emu/g for Fe3O4 and 27.5 emu/g for Fe3O4@m-SiO2. These results confirm the successful synthesis of superparamagnetic magnetite NPs with a mesoporous silica coating from RHA.
 
Full-Text [PDF 847 kb]   (60 Downloads)    

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb