Search published articles


Showing 487 results for in

Mohammad Alipour,
Volume 20, Issue 2 (6-2023)
Abstract

This study was undertaken to investigate the influence of graphene nano sheets on the structural characteristics and dry sliding wear behaviour of Al-5Cu-1Mg aluminium alloy. The optimum amount of GNPs for proper grain refining was selected as 0.5 wt.%. T6 heat treatment was applied for all specimens before wear testing. Significant improvements in wear properties were obtained with the addition of GNPs combined with T6 heat treatment. Dry sliding wear performance of the alloy was examined in normal atmospheric conditions. The experimental results showed that the T6 heat treatment considerably improved the resistance of Al-5Cu-1Mg aluminium alloy to the dry sliding wear. The results showed that dry sliding wear performance of without T6 microstructure specimens was a lower value than that of with T6 specimens.
 
Mohammad Jafar Molaei,
Volume 20, Issue 2 (6-2023)
Abstract

The introduction of the 2D materials in recent years has resulted in an emerging type of the constructed structures called van der Waals heterostructures (vdWHs) that take advantage of the 2D materials in forming atomically thin components and devices. The vdWHs are constructed by the stacking of 2D materials by van der Waals interactions or edge covalent boning. The electron orbitals of the 2D layers in vdWHs extend to each other and influence the electronic band structures of the constituent layers. The tunable optical response over a wide range of the wavelengths (NIR to visible) can be obtained by assembling vdWHs through combining of the monolayers. By application of 2D layers in vdWHs, p-n heterojunctions without lattice mismatch can be formed. The photodiodes based on the van der Waals interactions could be considered as promising candidates for future optoelectronic devices. Furthermore, on-chip quantum optoelectronics can move to the next generation by using 2D materials in vdWHs. In this review, the vdWHs are introduced and their properties and applications in light-emitting diodes (LEDs) have been discussed. The vdWHs allow bandgap engineering, and hence, LEDs working in a range of the wavelengths can be realized. The applications of vdWHs in forming atomically thin components in optoelectronic devices and LEDs have been addressed.
 
Elham Ghasemi, Majid Tavoosi, Ali Ghasemi, Mohammad Loghman Estarki,
Volume 20, Issue 2 (6-2023)
Abstract

In the present study, the structural and magnetic characteristics of Fe-Co-Cr system, with 28 at. % of Cr content, during casting, solutioning and thermo-magnetic treatment has been investigated. Based on results, the formation of single α-phase solid solution in the Fe72-xCoxCr28 (10The Co content had negligible effects on magnetic characteristics of Fe62Co10Cr28, Fe60Co12Cr28 and Fe58Co14Cr28 alloys. Fe72-xCoxCr28 (10 with a constant Cr content of about 28 at. %, were outside the miscibility gap in the equilibrium phase diagram, and therefore TMT had no effect on the final magnetic properties.
Mohammad Molaahmadi, Majid Tavoosi, Ali Ghasemi, Gholam Reza Gordani,
Volume 20, Issue 2 (6-2023)
Abstract

Investigation the structural and magnetic properties of nanocrystalline Co78Zr17B2Si1W2 alloy during melt spinning and annealing processes were the main goal of this study. In this regard, samples were prepared using vacuum induction melting, melt spinning and subsequent annealing. The specimens were evaluated using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). Based on results, nanocrystalline Co5Zr single phase with hard magnetic properties (Ms=29.5 emu/g and Hc=2.7 kOe) successfully formed during melt spinning process (at wheel speed of 40 m.s-1). The coercivity value of rapid solidified sample increased to about 3.2 kOe during annealing process up to 400°C. However, more increasing in annealing temperature lead to the transformation of non-equilibrium magnetic Co5Zr phase to stable Zr2Co11 phase, which has distractive effects on final magnetic properties.
 
Amirreza Sazvar, Seyed Mohammad Saeed Alavi, Hossein Sarpoolaky,
Volume 20, Issue 2 (6-2023)
Abstract

We report a simple and practical approach for the easy production of superhydrophobic coatings based on TiO2-SiO2@PDMS. In this study, we used tetraethylorthosilicate (TEOS) and titanium tetraisopropoxide (TTIP) as a precursor for the sol-gel synthesis of SiO2 and TiO2, respectively. Afterward, the surface of nanoparticles was modified by 1,1,1,3,3,3-hexamethyldisilazane (HMDS) before being combined with polydimethylsiloxane (PDMS). The hydrophobic property of coatings was evaluated by static contact angle measurements. The phase composition and structural evolution of the coatings were examined by X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analysis. It was shown that changing the weight ratio of the solution composition of the coating can affect the hydrophobicity of the surface. The best sample has shown a superhydrophobic property with a 153˚ contact angle which contained (75%TiO2-25%SiO2) and PDMS at a weight ratio of 1:1. Moreover, the results showed that the superhydrophobic coating retains its hydrophobic properties up to a temperature of 450 ˚C, and at higher temperatures, it converts to a super hydrophilic with a water contact angle close to 0 ˚. The SiO2-TiO2@PDMS coating degrades methylene blue by about 55% and was shown to be capable of photocatalytically decomposing organic pollutants.
Hassan Tarikhum, Basil A Abdullah, Furqan Almyahi, Mazin Mahdi,
Volume 20, Issue 2 (6-2023)
Abstract

In this study, poly(3-hexylthiophene) (P3HT) and fullerene Indene-C60 multi-adducts (ICxA) were blended to create a formulation as a solution and thin films, which were prepared under ambient conditions. The optical properties of various compositional ratios were studied using UV-Visible absorbance and photoluminescence (Pl) measurements. The energy gaps of the prepared thin films and solutions were determined, and their values increased with increasing fullerene ratio because of the isolation of P3HT chains from their neighbors. Intensity ratio (IC=C/IC-C) with a small value in addition to a low value of full width at high maximum (FWHM) of Raman spectra are associated with increased conformation and high aggregation of composition. Furthermore, according to X-ray diffraction  (XRD) results the 1:0.8 and 1:0.6 ratios have the largest crystallite sizes in comparison to the other ratios. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels for blends by electrochemical measurements were determined, which are sandwiched between those of the pure materials. In ambient conditions, binary organic photovoltaic cells (OPVs) at different ratios of the photoactive layer were evaluated. The device with a ratio of 1:0.6 had the best performance, with power conversion efficiency (PCE) of 1.21 %, open circuit voltage (VOC) of 0.53 V, short circuit current density (JSC) of  5.71 mA.cm-2, and fill factor (FF) of 39.5 % at a small Vloss of 1.39 V.
Maryam Salehi, Milad Dadashi, S. Parsa Kashani Sani,
Volume 20, Issue 2 (6-2023)
Abstract

In the present study, bulk refined-structured Al 5083 alloy with high mechanical properties was successfully fabricated by hot consolidation process of nanostructured melt- spun flakes. The influence of cooling rate and pressing conditions on the microstructure and mechanical properties of the alloy were investigated using X-ray diffractometer (XRD), optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), microhardness, and compression tests. Rapid solidification combined with the hot consolidation at T=753 K (480 °C) and P= 800 MPa for 20 min produced a bulk sample with the desirable bonding, good microhardness (184.2±12.4 HV), and high strength (273±8 MPa) combined with 7 pct. fracture strain. These amounts are 78.6±5.1 HV, 148 ±9 MPa and about 5 pct. for the as-cast sample. Microstructural refinement during the controlled consolidation of nanostructure rapidly- solidified flakes contributes to such high mechanical properties of the bulk sample.

 
Mohammad Porhonar, Yazdan Shajari, Seyed Hossein Razavi, Zahra-Sadat Seyedraoufi,
Volume 20, Issue 3 (9-2023)
Abstract

In this research, after pressing in a cylindrical mold, the AA 7075 alloy swarf was melted and cast in a wet sand mold. After rolling and cutting, sheets with two different thicknesses of 6 and 20 mm were obtained. The sheets after homogenization were solutionized at 485°C for 30 and 90 minutes, respectively, due to differences in thickness and thermal gradients. The solutionized samples were quenched in 3 polymer solutions containing 10, 30, and 50% Poly Alekylene Glycol. The results showed that melting, casting, rolling, and heat treatment of AA7075 alloy swarf similar properties to this alloy is achievable. Microstructural studies by optical microscopes (OM), Field Emission Scanning Electron Microscopy (FESEM), and X-ray diffraction (XRD) showed that by increasing the quenching rate after the solutionizing process, precipitation increases during aging. The tensile test results indicated that as the quench rate and internal energy increase, the diffusion driving force would increase the precipitation of alloying elements. Hence, this leads to an increase in hardness and reduction of its strain after aging.
Nguyen Vu Uyen Nhi, Doan Duong Xuan Thuy, Do Quang Minh, Kieu Do Trung Kien,
Volume 20, Issue 3 (9-2023)
Abstract

This paper introduces a method for producing red copper glaze by adding copper oxide (CuO) and silicon carbide (SiC) additives to the base glaze. SiC created a reducing environment in situ and allowed the glaze to be sintered in an oxidizing furnace environment. Nanocrystals are the determinants of the red color of the glaze. The CuO reduction reaction temperature range of SiC produces a reducing environment in the glaze as detected by the method (DSC). The functional group and phase of nanocrystals were determined by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) spectroscopy. 

Israa Khahtan Sabree, Batool Abd Aladel Jabar,
Volume 20, Issue 3 (9-2023)
Abstract

Abstract. Hydroxyapatite (HA) scaffold is commonly used in the applications of bone tissue engineering due to its bioactivity and equivalent chemical composition to the inorganic constituents of human bone. The present study focused on the fabrication of porous 3D hydroxyapatite scaffold which was modified by polymer coating as a successful strategy to improve the mechanical properties. A 3D porous hydroxyapatite scaffolds were fabricated by gel-casting method by using freshly extracted egg yolk (EY) with (50 and 60)wt% of HA powder. To enhance the mechanical properties, composite PVA/ HA scaffolds were produced by using dip coating in Polyvinyl alcohol (PVA). Fourier transform infrared spectroscopy (FTIR) was used to recognize the functional group associated with the hydroxyapatite scaffolds before and after PVA coating. The physical (density and porosity) and mechanical (compressive strength and elastic modulus) properties were investigated before and after coating. SEM was used to inspect the surface morphology and pore modification of the scaffolds. Wettability was determined by using a water contact angle to analyze the scaffold hydrophobicity. Surface roughness was studied by atomic force microscopy (AFM). It was revealed that the scaffold porosity decreased with increase solid loading of HA powder in the gel and after PVA coating. The findings showed that PVA coating improved mechanical strength of scaffold to be double by covering the small pores and filling microcracks sited on the scaffold strut surfaces, inducing a crack bridging mechanism. The scaffolds’ strength was in the range of trabecular bone strength. This indicates  non-load bearing applications.

Fabio Edson Mariani, Gabriel Viana Figueiredo, German Barragan, Luiz Carlos Castelleti, Reginaldo Teixeira Coelho,
Volume 20, Issue 3 (9-2023)
Abstract

Elevating component performance through advanced surface coatings finds its epitome in the domain of laser cladding technology. This technique facilitates the precision deposition of metallic, ceramic, or cermet coatings, accentuating their superiority over conventional methods. The application spectrum for laser-clad metallic coatings is extensive, encompassing critical components. Central to the efficacy of laser cladding is the modulation of laser parameters—encompassing power, speed, and gas flow—which decisively influence both process efficiency and coating properties. The meticulous calibration of these parameters holds the key to producing components endowed with refined attributes while ensuring the sustainable continuation of the process. As such, this study embarks on an empirical investigation aimed at transcending existing process limitations. It delves into the characterization of laser-clad WC-17Co coatings on AISI H13 and AISI 4140 steels. The importance of WC-17Co coatings lies in their capacity to enhance wear resistance, extend component life, reduce maintenance costs, and improve the performance of various industrial components across diverse sectors. On the other hand, the substrates have pivotal roles. AISI H13 is lauded for its exceptional hot work capabilities, while AISI 4140 steel is renowned for its robust strength and endurance. Through rigorous evaluation, the resultant deposited coatings offer crucial insights into the efficacy of manufacturing parameters. Employing a comprehensive suite of analytical techniques including laser confocal microscopy, Vickers microhardness assessment, and micro-adhesive wear testing, the study thoroughly characterizes the samples. The outcomes underscore the achievement of homogenous coatings marked by elevated hardness and exceptional wear resistance, thereby signifying a substantial enhancement over the substrate materials.
Deepak Jagannathana, Hiriyannaiah Adarsha, Keshavamurthy Ramaiah, Ramkumar Prabhud,
Volume 20, Issue 3 (9-2023)
Abstract

Several extensive researches are being carried out in the field of 3D printing. Polymer matrices, such as High-Density Polyethylene (HDPE), are less explored in particular on the microstructure and mechanical properties of HDPE composites developed via Fused Deposition Modelling (FDM) process. Very scarce amount of works is devoted to study HDPE’s reinforced with carbon nano-tubes (CNT’s) . In the present work, we report on the mechanical properties of  HDPE composites prepared via FDM process. Varying proportions of CNTs ( 0.5, 1, 1.5 and 2%) are used as reinforcements. It is found that increasing CNT content enhances impact and tensile strength, with HDPE/2.0%CNT outperforming pure HDPE by approximately 71.6% and 25.4%, respectively. HDPE/2.0%CNT composite also showed Young's modulus approximately 49.2% higher than pure HDPE. According to fracture analysis, pure HDPE failed near ductile, whereas composites failed brittle. CNTs occupy the free positions in the polymeric chains, and their tendency to restrict chain mobility causes HDPE to lose ductility and begin to behave brittle. The use of CNTs as reinforcement successfully improved the mechanical properties of HDPE.
Nailia Rakhimova, Vladimir Morozov, Aleksey Eskin, Bulat Galiullin,
Volume 20, Issue 3 (9-2023)
Abstract

In this study, the potential of calcined montmorillonite as a primary precursor for one-part alkali-activated cement incorporated with high percentage of limestone, is evaluated. Comparative studies on the properties of the sodium silicate activated metakaolin-limestone and metamontmorillonite-limestone fresh and hardened cement pastes depending on several formulation and processing parameters (precursor nature, dosages of limestone and alkali reactant, curing conditions) showed that metamontmorillonite exhibits reactivity comparable to that of metakaolin in the studied cement systems. The mechanical performance of optimal alkali-activated cement formulations consisted of 20-30% of metamontmorillonite and 70-80% of limestone is provided by both reactivity of metamontmorillomite under sodium silicate activation and the filler, nucleation, and chemical effects of the raw limestone. The reaction products and microstructures of alkali-activated metamontmorillonite-limestone cement-based hardened pastes were investigated using thermal, XRD, and SEM/EDS analyses.   
 
Hrishikesh Mahapatra, Sumit Bedia, Aishwarya Ramasubramanian, Mridula Joshi, Mahesh Ghadage, Aarti Bedia,
Volume 20, Issue 3 (9-2023)
Abstract

Graphene Nanoparticles (GNPs), an upshot of nanotechnology have attracted great interest in diverse research fields including dentistry for their unique properties. Graphene Nanoparticles are cytocompatible and when combined with other compounds, they possess improved synergistic antimicrobial and anti-adherence properties against oral pathogens. The cytotoxicity of graphene in the oral setting has been reported to be very limited in the scientific literature. Current applications of graphene include reinforcing Polymethylmethacrylate (PMMA) for the fabrication of dentures, improving properties of dental luting agents like glass ionomer cement, reinforcing restorative composites and ceramics, and improving osseointegration of titanium dental implants by coating with graphene. This paper reviews the nanoparticle ‘Graphene’ and its potential uses in the field of restorative dentistry.
 
Assist. Prof. Dr. Saad Mahmood Ali,
Volume 20, Issue 4 (12-2023)
Abstract

In the present work, development models of a new artificial human soft heart and artificial heart valves using nanocomposite materials and synthetics were designed, manufactured, and tested. The fabricated mechanical artificial heart valves were examined to determine the best service life for each type. The fatigue life results were implemented by using the transient repeated and continuously applied blood pressure on each produced value to simulate diastolic and systolic that occur in the natural heart at each pulse cycle. The obtained results showed that a 3D printing of a new generation soft artificial heart for a permanent replacement was implemented as an alternative to the high-cost available temporary implant mechanical hearts, which may exceed the price by tens and hundreds of thousands of dollars, with a working life of not more than five years. The obtained fatigue safety factors for the produced artificial valves using different materials and designs were decreased with the complexity of the movement of the moving parts of the valve. The highest rates were obtained when using the valves with flat, simple movement in one direction like the single-leaflet type valve, where all the used materials are suitable for the production of this type of valve. The highest obtained safety factor was reached (15). The lowest rates were recorded when using the highly flexible and strong PSN4 nanocomposite material for fabricating the mitral tri-leaflet valve (thick. = 1.0 mm) reached 1.91. This value decreases to 0.99 when using the same type and material of valve but with a thickness equal to 0.5 mm. It can be noted here that the only suitable for the manufacture of this artificial valve type is the nanocomposite polyetherimide/ silicone rubber with nano silica (PSN4), whereas the other used materials failed because the fatigue factor values are less than 1. The service life span of this material is about 9200 x 106 cycles, which is equivalent to about 290 years, followed by SIBSTAR 103 with a default age of 209.6 x 106 cycles or 9 years.
 
Bahram Azad, Ali Reza Eivani, Mohammad Taghi Salehi,
Volume 20, Issue 4 (12-2023)
Abstract

Microstructure evolution and mechanical properties of Zn-22Al alloy after post-ECAP natural/artificial aging were investigated. A homogenization treatment was applied to the casting samples. In addition, after preparing the samples for the ECAP, secondary homogenization treatment was done and then the samples quenched in the water to form a fine grain structure. After 8 passes of ECAP, some ECAPed samples were naturally aged and some ECAPed samples were artificially aged. Natural aging after 8 passes of ECAP showed that Zn-22Al alloy has a quasi-stable microstructure because limited grain growth occurred. Two-phase structure of Zn-22Al alloy prevented excessive grain growth after natural aging. On the other hand, artificial aging after 8 passes of ECAP caused a relatively much grain growth took place. In shorter times of artificial aging, the grain growth rate is faster due to the high surface energy of grain boundaries. On the contrary, as the time of artificial aging increased, the surface energy of grain boundaries decreased, which leads to a decrease in the grain growth rate. In addition, texture evolution was studied after aging artificial. Therefore, the main texture of α and η phases was determined.
 
Bijan Eftekhari Yekta, Omid Banapour Ghafari,
Volume 20, Issue 4 (12-2023)
Abstract

Glasses in the B2O3-Li2 (O, Cl2, I2) system were prepared through the conventional melt-quenching method. Then, the conductivity of the molten and glassy states of these compositions was evaluated. Furthermore, the thermal and crystallization behavior of the glasses was determined using simultaneous thermal analysis (STA) and X-ray diffractometry (XRD). The electrical conductivity of the melts was measured at temperatures ranging from 863 to 973 K, and the activation energy of the samples was calculated using the data obtained from ion conduction in the molten state and found to be in the vicinity of 32 kcal/mol. In glassy states, electrical conductivity was also measured. To determine this property, the electrochemical impedance spectroscopy method (EIS) was used. In the molten state, temperature played an important role in the ion conductivity; however, at lower temperatures, other factors became important. Based on the results, the addition of LiI and LiCl to the B2O3-Li2O base glass system (75 B2O3, 10 Li2O, 7.5 LiI, 7.5 LiCl) (mol%) increases the ionic conductivity of the glass from 3.2 10-8 S.cm-1 to 1.4 10-7 S.cm-1 at 300 K.
 
Mohammad Javad Sohrabi, Hamed Mirzadeh, Saeed Sadeghpour, Reza Mahmudi,
Volume 20, Issue 4 (12-2023)
Abstract

Deformation-induced α΄-martensite generally forms at shear bands in the coarse-grained austenite, while it nucleates at grain boundaries in the ultrafine-grained (UFG) austenite. The available kinetics models are related to the nucleation on the shear band intersections, and hence, their application to investigating the kinetics of α΄-martensite formation for the UFG regime cannot be justified. Accordingly, in the present work, the general Johnson–Mehl–Avrami–Kolmogorov (JMAK-type) model was implemented for comparing the kinetics of α΄-martensite formation in the UFG and coarse-grained regimes using an AISI 304L stainless steel. On the experimental front, the X-ray diffraction (XRD) patterns and the electron backscattered diffraction (EBSD) maps were used for phase and microstructural analyses, respectively. It was revealed that the simple JMAK-type model, by considering the dependency of the volume fraction of α΄-martensite on the strain, is useful for modeling the experimental data, predicting the nucleation sites based on the theoretical Avrami exponents, and characterizing the transformation kinetics at low and high strains.
Sajad Ghaemifar, Hamed Mirzadeh,
Volume 20, Issue 4 (12-2023)
Abstract

Phase transformations and the evolution of hardness during elevated-temperature annealing of Inconel 718 superalloy manufactured by the laser powder bed fusion (L-PBF) were investigated. The microstructural evolution, elemental analysis, phase formation, and hardening were characterized by scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and Vickers indentation test, respectively. It was observed that the effect of annealing treatments is directly governed by the annealing parameters (i.e. time and temperature), for which the hardness measurement as a fruitful and convenient tool can reveal this effect. The increase of the hardness, which was obtained by the annealing (aging) treatments at the temperature range of 800-900 °C, indicated precipitation of the Ni3Nb γ˝ strengthening phase; while owing to the coarsening of precipitates as a results of overaging at this temperature range, the hardness decreased. For instance the length and aspect ratio of precipitates in the aged sample at 800 °C for 1 h is 67.14 nm and 0.32, respectively; while these values in the aged sample at 800 °C for 8 h is 78.34 nm and 0.44, respectively. On the other hand, the decrease of the hardness at temperatures of 950 and 1000 °C was attributed to the decrease of dislocation density in conjunction with the Ni2Nb Laves phase dissolution. Hence, it is crucial to determine the annealing parameters according to the required microstructure and properties.
Adeel Hassan,
Volume 20, Issue 4 (12-2023)
Abstract

Friction stir additive manufacturing (FSAM) is a variant of sheet lamination additive manufacturing used to produce large, near-net-shaped 3D parts. Unlike traditional friction stir lap welding, FSAM introduces a new plate to one that is already joined, with the effective area limited to the nugget zone. The present study focuses on exploring the microstructure and microhardness around the nugget zone in a five-plate AA 7075-T651 laminate synthesized at 1000 rpm and 35 mm/min. Microhardness increased vertically in the weldment NZ, reaching 143 HV in the top layer with 2.0 μm fine equiaxed grains. The grains on the advancing and retreating sides were coarser compared to the nugget zone. A W-shaped microhardness profile appeared across layer interfaces. These findings contribute significantly to advancing the FSAM technique, particularly in manufacturing multi-layered, multi-pass laminates.

Page 23 from 25     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb