H. Nazemi, M. Ehteshamzadeh,
Volume 12, Issue 3 (9-2015)
Abstract
Compression springs were prepared from Cr-Si high strength spring steel and coated with pure Zn and ZnNi by electroplating process. The effect of baking after electroplating as well as applying an electroless nickel
interlayer on the fatigue and fatigue corrosion of the springs was investigated. The results were analyzed using weibull
statistical model. A considerable improvement (8%) in fatigue life of the electroplated springs with Zn-Ni was observed
in the presence of Ni interlayer. In addition, baking of these electroplated springs improved fatigue life by 4%. The
fatigue life under salt spraying conditions, however, has demonstrated remarkable reduction by 40%, 34% and 30%
for Zn-Ni plating, backed and unbaked Zn-Ni plating containing Ni interlayer, respectively
A. Mohammadpour, S. M. Mirkazemi, A. Beitollahi,
Volume 12, Issue 3 (9-2015)
Abstract
In the present study, the feasibility of α-Fe ferromagnetic phase formation in glass and glass-ceramic by
reduction in hydrogen atmosphere have been investigated. The glass with the composition of 35Na
2
O–24Fe2O3–20B
2O3
–
20SiO
2
–1ZnO (mol %) was melted and quenched by using a twin roller technique. As quenched glass flakes were heat
treated in the range of 400-675 °C for 1-2 h in hydrogen atmosphere, which resulted in reduction of iron cations to α-Fe
and FeO. The reduction of iron cations in glass was not completely occurred. Saturation magnetization of these samples
was 8-37 emu g -1
. For the formation of glass ceramic, As quenched glass flakes heat treated at 590 °C for 1 h. Heat
treatment of glass ceramic containing magnetite at 675°C in hydrogen atmosphere for 1 h led to reduction of almost all of
the iron cations to α-Fe. Saturation magnetization of this sample increased from 19.8 emu g
-1
for glass ceramic to 67 emu
g
-1
A. R. Amini, A. R. Zakeri, H. Sarpoolaky,
Volume 12, Issue 3 (9-2015)
Abstract
In this paper, the effect of MgO, BaO, Na
2
O and SrO addition to a pre-melted CaO-Al2O3
-Si
2
O synthetic
slag on sulfur removal from plain carbon steel was studied under the same experimental conditions. The slags were
pre-melted at 1400°C in an electric resistant furnace and desulfurization experiments were carried out in a high
frequency induction furnace. The results showed that the optimum reaction time for desulfurization was 15 min. It was
found that while SrO addition to the ternary slag enhances the sulfur removal capability, MgO, Na
2O and BaO
additions reduce desulfurization efficiency of the ternary slag. Moreover, it was observed that restricting access to
oxygen from the atmosphere by using a covered crucible, could increase desulfurization efficiency of the slag by more
than two fold
M. Amuei, M. Emamy, R. Khorshidi, A. Akrami,
Volume 12, Issue 3 (9-2015)
Abstract
In this study, Al2014 alloy refined with Al-5%Ti-1%B master alloy was prepared by strain-induced melt
activated (SIMA) process. The main variables of the SIMA process were cold working, holding time and temperature in
semi-solid state. Cold working was applied on specimens by upsetting technique to achieve 10%, 20% and 30% height
reduction. Cold worked specimens were heat treated in semi-solid state at 585 °C, 595 °C, 605 °C, 615 °C, 625 °C and
635 °C and were kept in these temperatures for different times (20 and 30 min). Observations through optical and
scanning electron microscopy were used to study the microstructural evaluation. The results revealed that fine and
globular microstructures are obtained by applying 30 % height reduction percentage and heat treating in 625 °C for
30 min. Comparison between refined and unrefined Al2014 alloy after applying SIMA process showed that Al-5%Ti-1%B master alloy has no significant effect on average globule size but makes the final structure more globular.
M. H. Hemmati, J. Vahdati Khaki, A. Zabett,
Volume 12, Issue 3 (9-2015)
Abstract
The volatile matter of non-coking coal was used for the reduction of hematite in argon atmosphere at nonisothermal condition. A thermal gravimeter furnace enable to use an 80 mm-height crucible was designed for the
experiments to measure the weight changes of about 10 grams samples. A two-layered array of coal and alumina and
four-layered array of iron oxide, alumina, coal and alumina was used for the devolatilization and reduction
experiments, respectively. The net effect of volatile reduction of Fe
2O3was determined and it was observe that 45%
reduction has been achieved. Three distinct regions were recognized on the reduction curve. The reduction of hematite
to magnetite could be completely distinguished from the two other regions on the reduction curve. At 600-950°C, the
reduction was accelerated. 63% of volatile matter resulted in 25% of total reduction before 600°C while the remaining
volatile matter contributed to 75% of the total reduction. From the reduction rate diagram, the stepwise reduction of
the iron oxides could be concluded. The partial overlap of the reduction steps were identified through the XRD studies.
The starting temperature of magnetite and wüstite reduction were determined at about 585°C and at 810°C,
respectively.
E. Khoshomid Aghdam, R. Naghizadeh, H. R. Rezaie,
Volume 12, Issue 3 (9-2015)
Abstract
MgAl2O4/Ti(C,N) composites were synthesized through aluminothermic reaction between Al,TiO
2,MgO
powders and phenolic resin in coke bed condition. Effect of addition of carbon black and sugar into the mixture at
different temperatures were investigated. The phases and microstructures of samples were investigated by X-ray
diffraction (XRD) and scanning electron microscopy (SEM). MgAl
2O4
/Ti(C,N) composites without additive were
obtained after heat treatment at 1600˚C. With addition of carbon black TiC, TiN and Ti(C,N) were appeared after firing
at 1400˚C and formation of spinel/Ti(C,N) composites were completed at 1600˚C. In sample containing sugar,
MgAl2O4
-Ti(C,N) composite were completely synthesized at 1400˚C. In this sample crystallite size of Ti(C,N) were 32
nm and carbon content of titanium carbonitride (Ti(C,N)) reached to 0.442 value.
A. Abbasian, M. Kashefi, E. Ahmadzade-Beiraki,
Volume 12, Issue 3 (9-2015)
Abstract
Precipitation hardening is the most common method in the strengthening of aluminium alloys. This method
relies on the decrease of solid solubility with temperature reduction to produce fine precipitations which impede the
movement of dislocations. The quality control of aluminium alloy specimens is an important concern of engineers.
Among different methods, non-destructive techniques are the fastest, cheapest and able to be used for all of parts in a
production line. To assess the ability of eddy current as a non-destructive method in the evaluation of precipitation
hardening of aluminium alloys, 7075 aluminium alloy specimens were solution treated at 480°C for 1 hr. and followed
by water quenching. Afterwards, the specimens were aged at different temperatures of 200, 170, 140, 110 and 80°C for
8 hr. Eddy current measurements was conducted on the aged specimens. Hardness measurement and tensile test were
employed to investigate the mechanical properties. It was demonstrated that eddy current is effectively able to separate
the specimens with different aging degree due to the change of electrical conductivity during aging process
A. Mohsenifar, M. R. Aboutalebi, S. H. Aboutalebi,
Volume 12, Issue 3 (9-2015)
Abstract
Hot dip aluminizing was carried out on the low carbon steel rod under optimized conditions. The aluminized
samples were further oxidized at 1000̊C in air atmosphere at two different times of 20 and 60 minutes. Microstructure
study and phase analysis were studied by scanning electron microscopy and X-ray diffraction methods, respectively.
The characterization of the coating showed that, Fe2
Al5
has been the major phase formed on the surface of specimen
before heat treatment. Following the oxidation of the coating at high temperature, Al
2O3
was formed on the surface of
coating while Fe
2
Al5
transformed into FeAl and Fe
3
Al which are favorable to the hot corrosion resistance of the
coating. Corrosion resistance of aluminized samples before and after heat treatment was evaluated by rotating the
samples in the molten aluminum at 700 ̊C for various times and the dissolution rate was determined. The obtained
results showed that by oxidizing the coating at high temperature, the corrosion resistance of the samples in molten
aluminum improves significantly.
M. Ershadi Khameneh, H. Shahverdi, M. M. Hadavi,
Volume 12, Issue 4 (12-2015)
Abstract
Creep age forming (CAF) is one of the novel methods in aerospace industry that has been used to manufacture components of panels with improved mechanical properties and reduced fabrication cost. CAF is a combined age-hardening and stress-relaxation that are responsible for strengthening and forming, respectively. This paper deals with the experimental investigations of mechanical and springback properties of Al-Zn-Mg Al alloy in creep forming process. Creep forming experiments have been performed at temperatures of 120◦C and 180◦C for 6–72 h. Results indicated that yield stress and hardness of creep age formed specimens increased with increasing forming time and temperature, simultaneously induced deflection by stress-relaxation increased. Incorporating spring back and mechanical properties, it can be found that the appropriate forming cycle was 180 ◦C/24 h among all forming conditions. CAF Time increase to a certain extent increased mechanical properties. This can be attributed to presence of stress in CAF that causes the precipitates be finer because of creation more nucleation sites. Therefor the growth of precipitates, takes place at long time and postpones the decreasing of the yield stress
M. Dehnavi, M. Haddad-Sabzevar, M.h. Avazkonandeh-Gharavol, H. Vafaeenezhad,
Volume 12, Issue 4 (12-2015)
Abstract
Microsegregation is one of the most important phenomena occurs during solidification. It usually results in formation of some unexpected second phases which generally affect the mechanical properties and specially reduce the workability of casting products. The aim of this research is to study the effect of cooling rate and grain refinement on the microsegregation in Al-4.8 wt.% Cu. For this purpose two series of experiments were designed. In the first set of experiments, the alloy was melted and cooled in three different rates, i.e. 0.04, 0.42, and 1.08 K/s in a DTA furnace. In the second series of experiments, the effect of grain refinement on the microsegregation at a constant cooling rate of 0.19 K/s was investigated. Al-5Ti-1B master alloy was used as grain refiner. Results showed that by increasing the cooling rate the amount of non-equilibrium eutectic phase increases from 5.1 to 7.4 wt.%, and the minimum concentration of solute element in primary phase decreases from 1.51 to 1.05 wt.% Cu. By grain refinement of the alloy, the amount of non-equilibrium eutectic phase decreases from 5.5 to 4.7 wt.%, and the minimum concentration of solute element in the primary phase increases from 0.98 to 1.07 wt.% Cu. So it is concluded that increasing cooling rate in the range of 0.04 to 1.08 K/s, increases and grain refinement reduces the microsegregation
J Gholami, M Pourbashiri, M Sedighi,
Volume 12, Issue 4 (12-2015)
Abstract
Equal-channel angular pressing (ECAP) combined with the Conform process provides a solution for the continuous production of ultrafine-grained materials. In the present study finite element method was executed to investigate the effects of die channel angle and friction on the strain homogeneity and the required torque in ECAP-Conform process. Deformation behaviour of Al 6061 wires was analyzed by using the ABAQUS/Explicit software. Finite element analyses by considering different channel angles (90ᵒ, 100ᵒ and 110ᵒ) and various friction conditions of 0.2, 0.3 and 0.4 were surveyed. The results revealed two distinct trends in which by increasing the channel angle among 90ᵒ to 110ᵒ, the amount of induced plastic strain through the wire reduced about 40%. Also required processing torque was decreased about50%. In addition more homogeneity was observed in higher angle values. The results regarding to equivalent strain, obtained from FE analyses, showed a good agreement with previous studies. Eventually plastic strains and required torque were increased about 8% and 12% when friction coefficient raised between (0.2-0.4).
E. Barati, Kh. Farmanesh,
Volume 12, Issue 4 (12-2015)
Abstract
The purpose of this research is to achieve the optimal parameters for producing forged aluminium alloy 7075 aircraft door bracket by using finite element modelling (FEM) with commercial DEFORM-3D V6.1 and physical simulations with plasticine and Plexiglas dies. Also, forging speed has been examined as the main factor for controlling to produce a part without any defects. The results of Physical Simulation showed that the flow pattern has good agreement with the results of FEM that based on the use of hydraulic presses with initial billet and dies temperatures 410 and 400 ° C, respectively, and different forging speeds 5, 10 and 15 mm/sec. Distribution of effective strain rate, effective strain, effective stress, temperature , forging force and dies wear showed improvement the results in forging speed of 5 mm/sec. Processing map of Aluminium alloy 7075 also checked out at constant strain 0.5, indicated that the specified area of the forged part is located in a safe area. Forging force in optimized forging speed 5 mm/sec showed that the forging process using a 1000-ton press can be done easily
M.h. Avazkonandeh-Gharavo, M. . Haddad-Sabzevar, H. Fredriksson,
Volume 13, Issue 2 (6-2016)
Abstract
Because the partition coefficient is one of the most important parameters affecting microsegregation, the aim of this research is to experimentally analyse the partition coefficient in Al-Mg alloys. In order to experimentally measure the partition coefficient, a series of quenching experiments during solidification were carried out. For this purpose binary Al-Mg alloys containing 6.7 and 10.2 wt-% Mg were melted and solidified in a DTA furnace capable of quenching samples during solidification. Cooling rates of 0.5 and 5 K/min were used and samples were quenched from predetermined temperatures during solidification. The fractions and compositions of the phases were measured by quantitative metallography and SEM/EDX analyses, respectively. These results were used to measure the experimental partition coefficients. The resultant partition coefficients were used to model the concentration profile in the primary phase and the results were compared with equilibrium calculations and experimental profiles. The results of calculations based on the experimental partition coefficients show better consistency with experimental concentration profiles than the equilibrium calculations.

E. Eshghi, M Kadkhodayan,
Volume 13, Issue 2 (6-2016)
Abstract
High speed and absence of a precise control over pressure distribution confine sheet Electromagnetic Forming into a die to simple shapes having shallow depth. It is possible to reach a higher depth by using a convex punch instead of a concave die. In this study, sheet Electromagnetic Forming on a punch and sheet Electromagnetic Forming into a die are investigated. The electromagnetic part of the study is investigated analytically and its mechanical part is studied numerically. In order to couple electromagnetic with mechanical parts, no-coupling method is used. The obtained results are verified by comparing the obtained results with previous experimental ones in literature. Rate-dependent and rate-independent hardenings are taken into consideration for the mechanical behavior for material of AAl1050. Using appropriate hardening model for material yields acceptable results. Moreover, a convex punch instead of a concave die is used to reach to a higher depth in sheet Electromagnetic Forming.
M. Rakhshkhorshid,
Volume 13, Issue 3 (9-2016)
Abstract
Till now, different constitutive models have been applied to model the hot deformation flow curves of different materials. In this research, the hot deformation flow stress of API X65 pipeline steel was modeled using the power law equation with strain dependent constants. The results was compared with the results of the other previously examined constitutive equations including the Arrhenius equation, the equation with the peak stress, peak strain and four constants and the equation developed based on a power function of Zener-Hollomon parameter and a third order polynomial function of strain power a constant number. Root mean square error (RMSE) criterion was used to assess the performance of the understudied models. It was observed that the power law equation with strain dependent constants has a better performance (lower RMSE) than that of the other understudied constitutive equations except for the equation with the peak stress, peak strain and four constants. The overall results can be used for the mathematical simulation of hot deformation processes
. S. Khani, . M. T. Salehi, . H. R. Samim, Prof. M. R. Aboutalebi, . H. Palkowski,
Volume 13, Issue 3 (9-2016)
Abstract
The evolution of microstructure and mechanical properties of a magnesium cast alloy (AZ31) processed by equal channel angular pressing (ECAP) at two different temperatures were investigated. The as-cast alloy with an average grain size of 360 was significantly refined to about 5 after four ECAP passes at 543 K. Grain refinement was achieved through dynamic recrystallization (DRX) during the ECAP process in which the formation of necklace-type structure and bulging of original grain boundaries would be the main mechanisms. ECAP processing at lower temperature resulted in finer recrystallized grains and also a more homogenous microstructure. The mechanical behavior was investigated at room temperature by tensile tests. The obtained results showed that the ECAP processing can basically improve both strength and ductility of the cast alloy. However, the lower working temperature led to higher yield and ultimate strength of the alloy.
N. Radhika, R. Raghu,
Volume 13, Issue 4 (12-2016)
Abstract
Functionally graded aluminium/zirconia metal matrix composite was fabricated using stir casting technique followed by horizontal centrifugal casting process and a hollow cylindrical functionally graded composite (150 x 150 x 16 mm) was obtained with centrifuging speed of 1200 rpm. The microstructural evaluation and hardness test was carried out on the outer and inner surface of the functionally graded composite at a distance of 1 and 13 mm from the outer periphery. In Response Surface Methodology, Central Composite Design was applied for designing the experiments and sliding wear test was conducted as per the design using a pin-on-disc tribometer for varying ranges of load, velocity and sliding distance. The model was constructed and its adequacy was checked with confirmation experiments and Analysis of Variance. The microstructural examination and hardness test revealed that the outer surface of FGM had higher hardness due to the presence of particle rich region and the inner surface had lesser hardness since it was a particle depleted region. The wear results showed that wear rate increased upon increase of load and decreased with increase in both velocity and sliding distance. Scanning Electron Microscopy analysis was done on the worn specimens to observe the wear mechanism. It was noted that wear transitioned from mild to severe on increase of load and the outer surface of FGM was found to have greater wear resistance at all conditions.
M. Mahmoudiniya, Sh. Kheirandish, M. Asadi Asadabad,
Volume 14, Issue 1 (3-2017)
Abstract
Nowadays, Ni-free austenitic stainless steels are being developed rapidly and high price of nickel is one of the most important motivations for this development. At present research a new FeCrMn steel was designed and produced based on Fe-Cr-Mn-C system. Comparative studies on microstructure and high temperature mechanical properties of new steel and AISI 316 steel were done. The results showed that new FeCrMn developed steel has single austenite phase microstructure, and its tensile strength and toughness were higher than those of 316 steel at 25, 200,350 and 500°C. In contrast with 316 steel, the new FeCrMn steel did not show strain induced transformation and dynamic strain aging phenomena during tensile tests that represented higher austenite stability of new developed steel. Lower density and higher strength of the new steel caused higher specific strength in comparison with the 316 one that can be considered as an important advantage in structural applications but in less corrosive environment
H. Torabzadeh Kashi, M. Bahrami, J. Shahbazi Karami, Gh. Faraji,
Volume 14, Issue 2 (6-2017)
Abstract
In this paper, cyclic flaring and sinking (CFS) as a new severe plastic deformation (SPD) method was employed to produce the ultrafine grain (UFG) copper tubes. The extra friction has eliminated in the CFS method that provided the possibility for production of longer UFG tubes compared to the other SPD methods. This process was done periodically to apply more strain and consequently finer grain size and better mechanical properties. The CFS was performed successfully on pure copper tubes up to eleven cycles. Mechanical properties of the initial and processed tubes were extracted from tensile tests in the different cycles. The remarkable increase in strength and decrease in ductility take placed in the CFS-ed tubes. The material flow behavior during CFS processing was analyzed by optical microscopy (OM), and a model was presented for grain refinement mechanism of pure copper based on multiplication and migration of dislocations (MMD). This mechanism caused that the initial grains converts to elongated dislocation cells (subgrains) and then to equiaxed ultrafine grains in the higher cycles. The CFS method refined the microstructure to fine grains with the mean grain size of 1200nm from initial coarse grain size of 40µm
N. Aboudzadeh, Ch. Dehghanian, M.a. Shokrgozar,
Volume 14, Issue 4 (12-2017)
Abstract
Recently, magnesium and its alloys have attracted great attention for use as biomaterial due to their good mechanical properties and biodegradability in the bio environment. In the present work, nanocomposites of Mg - 5Zn - 0.3Ca/ nHA were prepared using a powder metallurgy method. The powder of Mg, Zn and Ca were firstly blended, then four different mixtures of powders were prepared by adding nHA in different percentages of 0, 1, 2.5 and 5 %wt. Each mixture of powder separately was fast milled, pressed, and sintered. Then, the microstructure and mechanical properties of the fabricated nanocomposites were investigated. The XRD profile for nanocomposites showed that the intermetallic phases of MgZn2, MgZn5.31 and Mg2Ca were created after sintering and the SEM micrographs showed that the grain size of nanocomposite reduced by adding the nHA. The nano composite with 1wt. % nHA increased the density of Mg alloy from 1.73 g/cm3 to 1. 75 g/cm3 by filling the pores at the grain boundaries. The compressive strength of Mg alloy increased from 295MPa to 322, 329 and 318MPa by addition of 1, 2.5 and 5wt. % nHA, respectively.