Showing 24 results for Deposition
Husna Hanifa, Eka Cahya Prima, Andhy Setiawan, Endi Suhendi, Brian Yuliarto,
Volume 20, Issue 3 (9-2023)
Abstract
In the third generation of solar cells, cheaper absorbent layers such as Cu2ZnSnS4 (CZTS) have been developed with specifications similar to Cu2InGaS4 (CIGS). This CZTS material is known as a material with good structural and optical properties where the CZTS material has a series of atoms bonded to each other to form a kesterite or stannite crystal arrangement. In its use as an absorbent layer for solar cells, CZTS material is synthesized using the electrochemical deposition method. In this electrochemical deposition technique, an electrical circuit will be connected to the electrode and inserted into the electrolyte. Several voltage variations from 1 volt to 5 volts will be applied to the electrical circuit, which will then trigger ions from the precipitating material in the electrolyte to stick to one of the electrodes. Variation of deposition voltage was carried out to determine the effect of deposition stress on the electrochemical deposition method on the characteristics of the CZTS absorbent layer. The characterizations used are X-Ray Diffraction (XRD), UV-Vis Spectrometry, and I-V meter. XRD results show that the resulting crystal size is getting smaller with greater deposition voltage around 6.07 - 7.27 nm. The optical absorption results show that the CZTS absorber layer is sensitive at low wavelengths around 300 – 480 m,, with Light Harvesting Efficiency (LHE) ranging from 13.3 - 24.75%. The band gap energy values obtained ranged from 1.4 to 1.48 eV. The cell efficiency test results show an excellent efficiency value according to the reference ranges from 2.56-8.77%. These results indicate that the deposition voltage affects the characteristics of the CZTS absorbent layer for solar cell applications.
Tanaji Patil, S M Nikam, R S Kamble, Rahul Patil, Mansing Takale, Satish Gangawane,
Volume 21, Issue 1 (3-2024)
Abstract
The trimanganese tetraoxide (Mn3O4) nanostructured thin films doped with 2 mol % of nickel (Ni) and molybdenum (Mo) ions were deposited by a simple electrophoretic deposition technique. The structural, optical, and morphological studies of these doped thin films were compared with pure Mn3O4 thin films. X-ray diffraction (XRD) confirmed the tetragonal Hausmannite spinel structure. The Fourier transform infrared spectroscopy (FTIR) provided information about the molecular composition of the thin films and the presence of specific chemical bonds. The optical study and band gap energy values of all thin films were evaluated by the UV visible spectroscopy technique. The scanning electron microscopy (SEM) illustrated the morphological modifications of the Mn3O4 thin films due to doping of the nickel and molybdenum ions. The Brunauer Emmett Teller (BET) method has confirmed the mesoporous nanostructure and nanopores of the thin films. The supercapacitive performance of the thin films was studied by cyclic voltammetry (CV), and galvanostatic charge discharge (GCD) techniques using the three-electrode arrangement. An aqueous 1M Na2SO4 electrolyte was used for the electrochemical study. The 2 mol % Ni doped Mn3O4 thin film has shown maximum specific capacitance than pure and Mo doped Mn3O4 thin films. Hence, this study proved the validity of the strategy - metal ion doping of Mn3O4 thin films to develop it as a potential candidate for electrode material in the futuristic energy storage and transportation devices.
Dipali Potdar, Sushant Patil, Yugen Kulkarni, Niketa Pawar, Shivaji Sadale, Prashant Chikode,
Volume 21, Issue 1 (3-2024)
Abstract
The Nickel tungsten (Ni-W) alloy was electrodeposited on stainless steel (SS) substrate using potentiostatic mode at room temperature. Potentiostatic electrodeposition was carried out by varying the deposition time. The physicochemical properties of Ni-W alloys were studied using X-Ray diffraction (XRD), Electron Microscopy and micro-Raman spectroscopy. Recorded XRD spectra was compared with standard JCPDS card and the presence of Ni was confirmed, no such peaks for W were observed. Further study was extended for micro-Raman analysis. From Raman spectroscopy study the appearance of Ni-O and W6+=O bonds confirms that the Ni-W present in amorphous phase. Several cracks were observed in SEM images along with nanoparticles distributed over the electrode surface. The appearance of cracks may be correlated with the in-plane tensile stresses, lattice strains and stacking faults and may be related to the substrate confinements.
Hadi Sharifidarabad, Alireza Zakeri, Mandana Adeli,
Volume 21, Issue 3 (9-2024)
Abstract
The sensitivity of lead dioxide coating properties to the deposition conditions and electrolyte composition has allowed the preparation of coatings with different properties for different applications. In this study, the effects of electrolyte additives on the electrodeposition process were investigated using electrochemical measurements such as cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results showed that the presence of fluoride ions significantly reduce the possibility of TiO2 formation. The addition of copper ions not only prevents lead loss at the cathode, but also leads to the formation of copper oxide on the surface at initial stages, which hinders nucleation of PbO2. The presence of sodium dodecyl sulfate (SDS) also interferes with the nucleation process as it occupies active nucleation sites. The α-PbO2 interlayer prevents copper oxidation and solves the problem of lead dioxide nucleation. Finally, it was found that the simultaneous use of all additives together with the α-PbO2 interlayer has a positive effect on the coating process.