Search published articles


Showing 37 results for Tem

M. Maddah, M. Rajabi, S. M. Rabiee,
Volume 12, Issue 4 (12-2015)
Abstract

In this study, the composite material with composition of MgH2-5 wt% SiC has been prepared by co-milling of MgH2 with SiC powder. The effect of milling time and additive on MgH2 structure, i.e. crystallite size, lattice strain, particle size and specific surface area, and also hydrogen desorption properties of obtained composite was evaluated by thermal analyzer method and compared with pure un-milled MgH2. The phase constituents and grain size of powder were characterized by X-ray diffractometry method. It has been shown that addition of 5 wt% SiC to MgH2 and mechanical alloying up to 30 h formed a nanocrystalline composite with the average crystallite size of 12 nm, average particle size of 0.5 µm and specific surface area of 10 m2/g. On the other hand, SiC can help to break up particles and reduce the particle size. As a consequence, the desorption temperature of composite material milled for 30 h has decreased from 435 °C to 361 °C.


P. Amin, A. Nourbakhsh, P. Asgarian, R. Ebrahimi Kahrizsangi,
Volume 13, Issue 3 (9-2016)
Abstract

In this study, Boron carbide was synthesized using Mesoporous Carbon CMK-1, Boron oxide, and magnesiothermic reduction process. The Effects of temperature and magnesium grain size on the formation of boron carbide were studied using nano composite precurser containg mesoporous carbon. Samples were leached in 2M Hydrochloric acid to separate Mg, MgO and magnesium-borat phases. SEM, XRD and Xray map analysis were caried out on the leached samples to characterize the  boron carbide. results showed that the reaction efficiency developed in samples with weight ratio of B2O3:C:Mg = 11:1.5:12, by increasing the temperature from 550 to 650 °C and magnesium powder size from 0.3 m to 3 m.


M. Mahmoudiniya, Sh. Kheirandish, M. Asadi Asadabad,
Volume 14, Issue 1 (3-2017)
Abstract

Nowadays, Ni-free austenitic stainless steels are being developed rapidly and high price of nickel is one of the most important motivations for this development. At present research a new FeCrMn steel was designed and produced based on Fe-Cr-Mn-C system. Comparative studies on microstructure and high temperature mechanical properties of  new steel and AISI 316 steel were done. The results showed that new FeCrMn developed steel has single austenite phase microstructure, and its tensile strength and toughness were higher than those of 316 steel at 25, 200,350 and 500°C. In contrast with 316 steel, the new FeCrMn steel did not show strain induced transformation and dynamic strain aging phenomena during tensile tests that represented higher austenite stability of new developed steel. Lower density and higher strength of the new steel caused higher specific strength in comparison with the 316 one that can be considered as an important advantage in structural applications but in less corrosive environment


K. Susilo, A. Ahmadi, O. S. Suharyo, P. Pratisna,
Volume 14, Issue 2 (6-2017)
Abstract

Indonesian Navy (TNI AL) is the main component for Maritime Security and Defence. Because of that, TNI AL needs Indonesian Warship (KRI) to covered Maritime area. The main requirement from KRI is fulfilled by demand. To pock of fuel demand from KRI at Naval Base, it needs a new pipeline of fuel distribution network system. The pipeline network system used for maximum lifetime must be protected from corrosion. Basically, there are five methods of corrosion control such as change to a more suitable material, modification to the environment, use of protective coating, design modification to the system or component, and the application of cathodic or anodic protection. Cathodic protection for pipeline available in two kinds, namely Sacrifice Anode and Impressed Current Cathodic Protection (ICCP). This paper makes analysis from design of Impressed Current Cathodic Protection and total current requirement in the method. This paper showed both experimental from speciment test and theoritical calculation. The result showed that design of Impressed Current Cathodic Protection on fuel distribution pipeline network system requires voltage 33,759 V(DC), protection current 6,6035 A(DC) by theoritical calculation and 6,544 A(DC) from pipeline specimen test, with 0,25 mpy for corrosion rate. Transformer Rectifier design needs requirements 45 V with 10 A for current. This research result can be made as literature and standardization for Indonesian Navy in designing the Impressed Current Cathodic Protection for fuel distribution pipeline network system.


V. Lykhoshva, A. Tymoshenko, L. Mosentsova, V. Savin, D. Schitz,
Volume 15, Issue 1 (3-2018)
Abstract

This article studies the particle temperature distribution depending on the laser radiation power and the particle’s trajectory and velocity. The uneven heating of particles moving in the laser radiation field is identified. The regimes of laser heating without melting, with partial melting, and with complete particle melting are considered.

M. Naseri, M. Alipour, A. Ghasemi, E. Davari,
Volume 15, Issue 1 (3-2018)
Abstract

One of the interesting state-of-the-art approaches to welding is the process of friction stir welding (FSW). In comparison with the fusion processes, FSW is an advantageous method as it is suitable for the non-fusion weldable alloys and polymeric materials joining. Regarding the materials pure solid state joining, it also provides joints with less distortion and enhanced mechanical properties. In the present work, a three-dimensional (3D) model based on finite element analysis was applied to study the thermal history and thermomechanical procedure in friction stir welding of high density polyethylene plate. The technique includes the tool mechanical reaction and the weld material thermomechanical procedure. The considered heat source in the model, includes the friction among three items: the material, the probe and the shoulder. Finally, the model was validated by measuring actual temperatures near the weld nugget using thermocouples, and good agreement was obtained for studied materials and conditions.

A. Kazazi, S. M. Montazeri, S. M. A. Boutorabi,
Volume 17, Issue 4 (12-2020)
Abstract

In the present study, austempering heat treatment was performed on compacted graphite aluminum cast iron with the chemical composition of 4.8%wt Al, 3.2%wt C, 0.81%wt Ni, 0.37%wt Mn, and 0.02%wt Mg. This study aims to investigate the effect of aluminum additions and removal of silicon on the kinetics of austempering transformation of Fe-3.2%C alloy. The cast samples were austenitized at 900 °C for 120 min and the isothermal austempering heat treatment was performed at 200 °C, 300 °C and 400 °C for 5, 30, 60, 120 and 180 minutes, respectively. Kinetics of this transformation was studied by X-Ray diffraction (XRD) analysis. The effect of temperature and time on the microstructure and hardness of the austempered samples was investigated and discussed. The presence of Al was seen to prolonged formation of the carbides from high carbon austenite, and that expanded the process window in the austempering transformation. Besides, the lower bainitic ferrite phase was observed in the austempered samples at 200 °C and 300 °C. Increasing austempering temperature to 400 °C changed the lower bainite to upper bainite structure. The volume fraction of austenite reached its maximum level (34.6 %) after austempering the samples at 400 °C for 30 minutes.

E. K. Droepenu, B. S. Wee, S. F. Chin, E. A. Asare,
Volume 17, Issue 4 (12-2020)
Abstract

Sago hampas was chemically modified through esterification process to adsorb both laboratory and commercial synthesized ZnO nanoparticles from water in a batch adsorption studies. The esterified sago hampas (ECSH) as a biosorbent w:as char:acterized using Energy dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) technique s. Investigating the effect of pH, contact time, initial sorbate ion concentration, temperature and sorbent mass were carried out where adsorption parameters were analyzed using Langmuir, Freundlich and Temkin models. The correlation between kinetics of adsorption and tgr rate order of ZnO nanoparticles on ECSH were also determined. The adsorption of the ZnO nanoparticles was found to increase with increasing contact time with the attainment of equilibrium at 100th minutes with maximum removal efficiency of 85.5% (0.036 mg/g) and 89.6% (0.106 mg/g)  ZnO nanoparticles for laboratory and commercial synthesized ZnO from aqueous solution. An optimum pH of 8 with adsorbent dose of 2.0 g at a temperature of 50 oC gave good results of  ZnO nanoparticles removal. The equilibrium data for both sorbate solution fitted well for both Langmuir and Freundlich isotherm models. From the Langmuir model, ECSH recorded greater sorption capacity of 0.2 mg/g and 0.6 mg/g for both laboratory and commercial synthesized ZnO nanoparticles respectively. The kinetic studies showed pseudo-second order model as the best fitted for the sorption of ZnO nanoparticles for both synthesized samples.
Yogesh Dewang, Vipin Sharma,
Volume 18, Issue 1 (3-2021)
Abstract

Finite element analysis has been carried out to investigate the effect of various parameters on axisymmetric hot extrusion process using aluminum alloy. The objective of the present work is to investigate the effect of friction coefficient, die angle, die-profile radius and predefined temperature of workpiece through FEM simulation of extrusion process. Nodal temperature distribution, heat flux, peak temperature at nodes and peak flux induced are identified as the output variables to assess the thermo-mechanical deformation behavior of aluminum alloy. Mesh sensitivity analysis is performed for the evaluation of mesh convergence as well as depicts the accuracy of present FEM model. Higher will be the coefficient of friction between interacting surfaces of die-billet assembly, more will be the increment in nodal temperature in billet. Higher will be the coefficient of friction, higher will be the generation of heat flux within billet, as this is achieved for highest coefficient of friction. Peak nodal temperature diminishes with increase in die profile radius nearly by 17 %.Maximum heat flux diminishes non-linearly by 30% with increase in die profile radius. Maximum nodal temperature increases nearly linearly by 14% with increment in predefined temperature of billet. Maximum heat flux decreases non-linearly by 5 % with increment in the initial temperature of workpiece. Validation of present numerical model is established on the basis of deformation behavior in terms of evolution of nodal temperature distribution upon comparison with previous studies available in literature.


Najwa Gouitaa, Lamcharfi Taj-Dine, Bouayad Lamfaddal, Abdi Farid, Mohamed Ounacer, Mohammed Sajieddine,
Volume 18, Issue 2 (6-2021)
Abstract

    The structural and dielectric properties of iron and bismuth co-substituted BaTiO3 ceramic with the formula: B0.95Bi0.05Ti1-xFexO3 for x=0.00 to 1.00, synthesis with solid state route, were characterized.     The X-ray diffraction results show a tetragonal phase for x=0.00. While for x=0.40 to 0.80 we observed a coexistence of tree phase tetragonal, hexagonal and pseudo-cubic. And at x=1.00 only the pseudo-cubic phase is present and the other phase disappeared. The Raman results indicate the existence of tetragonal band for x≤0.40, and an appearance of characteristic bands of Fe3+ ions for more than 0.40 of Fe content. The SEM micrographs show an increase in grain size with the increase of Fe content and it reaches a maximum at x=0.40.  And the Mossbauer spectroscopy indicates that our samples is paramagnetic at room temperature and that the Fe is   oxidized under Fe3+ with no existence of Fe2+ and Fe4+ ions. The temperature dependence of dielectric permittivity was investigated in the frequency range from 20 Hz to 2MHz. The results show three dielectric relaxation phase transitions from a rhombohedral ferroelectric to orthorhombic ferroelectric (TR-O) then to a tetragonal ferroelectric phase (at TO-T), and finally to cubic paraelectric at the Curie temperature (TC).  In addition, the temperature of phase transition shifted to the lower temperature with the increase of Fe content for all the phase transitions. And the maximum of dielectric permittivity increases for TR-O while for TT-O and Tm phases transitions, it reaches a maximum at x=0.60 and x=0.80 respectively and then decreases.

Rahida Wati Sharudin, Nik Salwani Md Azmi, Muhammad Shafiq Mat Shayuti, Masahiro Ohshima,
Volume 18, Issue 2 (6-2021)
Abstract

The control of silicone rubber’s viscoelastic properties namely loss factor, storage and loss moduli during crosslinking are crucial as its malleable behaviour changes differently under different conditions and affecting the final product. Hence, it becomes the objective of this study to investigate the rheological behaviour of silicone rubber cured under different formulation ratios with platinum catalysts and triethylamine, methanol & ethanolamine solvent. Measurement was conducted for the silicone rubber to crosslinker ratios of 2.5:7.5, 5:5, 7.5:2.5 and 10:1 at different elevated temperatures, and for the silicone rubber with triethylamine, methanol and ethanolamine at different angular frequencies. While the crossover of storage and modulus curve which signifies a gel point was not observed at higher ratios of platinum used across the temperature range of 25 – 100°C, it was found at 89°C and 95°C with the formulation ratios of 10:1 and 7.5:2.5, respectively. On the other hand, the crossover point was observed for silicone rubber at 100 s-1 for triethylamine, 3 s-1 and 100 s-1 for methanol, and 70 s-1 alongside 290 s-1 for ethanolamine. The presence of gel point indicates that crosslinking of silicone rubber successfully took place and this study proves that controlling the crosslinking behaviour was possible.
Tamilanban Thangaraju, Thirupandiyur Selvanambi Ravikumar, Sivaraman Kanthasamy,
Volume 18, Issue 4 (12-2021)
Abstract

The effect of pouring temperature while preparing Al SiC metal matrix composites, with additional benefits of magnesium and copper through stir casting technique were investigated. The composites were fabricated by mixing 12 wt% of SiC reinforcements, 4 wt% magnesium and 2 wt% copper into 6061 aluminium alloy melt at different pouring temperatures (630 ºC, 670 ºC and 710ºC). The addition of magnesium will enhance the wettability of the SiC particles with Al matrix and subsequently increase its interface bonding strength. The inclusion of copper has considerable improvement in strength and hardness of the composite. The microstructure and mechanical properties (tensile strength and hardness) of the Al MMC are evaluated with the corresponding processing parameter, specifically pouring temperature of the cast composite. The metallurgical characterization utilizing optical and scanning electron microscope were observed for the prepared composites. The coarse microstructure and homogenous distribution of alloying elements along with SiC particles were appeared within dendrite structures of the Al SiC composites. The SiC particles has effectively distributed and produced better bonding strength in composites prepared with 670ºC pouring temperature. Higher tensile strength and maximum hardness have occurred in composite at pouring temperature of 670ºC as compared to other composites. The mechanical properties were lower in composites prepared using lesser pouring temperature (630ºC) and significantly decreased for higher pouring temperature (710ºC) of the composites.
 

Amanda C. Juraski, Márcia M. Simbara, Vera Paschon, Sônia M. Malmonge, Juliana K.m.b. Daguano,
Volume 19, Issue 2 (6-2022)
Abstract

The success of a drug delivery system relies heavily on its interaction with cells from the target tissue. The range of applications for ibuprofen-loaded chitosan (ICH) films is widening, mainly due to the biodegradability of chitosan (CH) films and ibuprofen’s safety and versatility, with a particular interest in exploring it as neural drug delivery system. In this study, CH and 12% (w/w) ICH films were prepared through the solvent cast, and characterized regarding their physicochemical composition, surface and bulk morphology, drug release profile, and cell viability of primary neurons from the rat spinal cord. Fourier transform infrared spectroscopy (FTIR) analyses demonstrated that both groups had a similar composition. According to scanning electron microscopy (SEM) images, ibuprofen particles were entrapped on the surface and inside the polymeric matrix. In vitro drug release profile indicated that release starts as diffusion within the first hours, is best fitted by the Higuchi model, and continues for at least 30 days, in agreement with the Korsmeyer-Peppas model. Therefore, ibuprofen is first released through the diffusion process of the particles found on the surface and later through a combination of diffusion and erosion of the chitosan matrix. Regarding in vitro cell viability of primary neurons, CH and ICH extracts are non-toxic, as both groups displayed cell viability over 50%. ICH films are mildly reactive in neuronal cells, but do not cause severe cell death i.e., it allowed non-cytotoxic neuronal and glial differentiation. These findings enhanced our understanding of ICH films as a safe neural drug release system to be explored.
Pooyan Soroori, Saeid Baghshahi, Arghavan Kazemi, Nastaran Riahi Noori, Saba Payrazm, Amirtaymour Aliabadizadeh,
Volume 19, Issue 3 (9-2022)
Abstract

The goal of the present study is to prepare a room temperature cured hydrophobic and self-cleaning nano-coating for power line insulators. As a result, the installed insulators operating in power lines can be coated without being removed from the circuit and without the need to cut off power. For this purpose, hydrophobic silica nanoparticles were synthesized by sol-gel method using TEOS and HMDS. The synthesized hydrophobic silica nanoparticles were characterized by XRD, FTIR, SEM, and TEM analyses to investigate phase formation, particle size, and morphology. Then the surface of the insulator was cleaned and sprayed by Ultimeg binder solution, an air-dried insulating coating, as the base coating. Then the hydrophobic nano-silica powder was sprayed on the binder coated surface and left to be air-cured at room temperature. After drying the coating, the contact angle was measured to be 149o. Pull-off test was used to check the adhesion strength of the hydrophobic coating to the base insulator. To evaluate the effect of environmental factors, UV resistance and fog-salt corrosion tests were conducted. The results showed that 150 hours of UV radiation, equivalent to 9 months of placing the samples in normal conditions, did not have any significant effect on reducing the hydrophobicity of the applied coatings.
Satish Ahire, Ashwini Bachhav, Bapu Jagdale, Thansing Pawar, Prashant Koli, Dnyaneshwar Sanap, Arun Patil,
Volume 21, Issue 2 (6-2024)
Abstract

Hybrid photocatalysts, comprising both inorganic and organic polymeric components, are the most promising photocatalysts for the degradation of organic contaminants. The nanocomposite, Titania-Polyaniline (TiO2-PANI) was synthesized using the chemical oxidative polymerization method. Various characterization techniques were employed to assess the properties of the catalysts. The ultraviolet diffuse reflectance spectroscopy (UV-DRS) analysis revealed that the TiO2 absorbs only UV light while the TiO2-PANI nanocomposite absorbs light from both UV and visible regions. The X-ray diffraction (XRD) results confirmed the presence of TiO2 (anatase) in both TiO2 nanoparticles and TiO2-PANI (Titania-Polyaniline)  nanocomposite. The phases of the catalysts were verified through Raman, TEM, and SAED techniques where all results are in good agreement with each other. The average crystallite size of TiO2 nanoparticle and TiO2-PANI nanocomposite were 13.87 and 10.76 nm. The thermal stability of the catalysts was assessed by the Thermal gravimetric analysis (TGA) technique. The order of the thermal stability is TiO2 > TiO2-PANI > PANI.  The crystal lattice characteristics were confirmed using Transmission electron microscopy (TEM). The surface area measurements were confirmed from the Brunauer-Emmett-Teller (BET) study and were employed for the evaluation of the photocatalytic efficiency of both, TiO2 nanoparticles and TiO2-PANI nanocomposite catalysts. The energy dispersive spectroscopy (EDS) study was employed for elemental detection of the fabricated materials. While Raman spectroscopy was employed for the chemical structure and the phase characteristics of the materials. The standard conditions for the degradation of the CF dye were 8 g/L of catalyst dosage, 20 mg/L of dye concentration, and a pH of 7. The TiO2-PANI nanocomposite exhibited superior efficiency as compared to pure TiO2 nanoparticles, achieving almost 100 % degradation in just 40 minutes.  
Muddukrishnaiah Kotakonda, Sajisha V.s, Aiswarya G, Safeela Nasrin Pakkiyan, Najamol A Alungal, Mayoora Kiliyankandi K, Divya Thekke Kareth, Naheeda Ashraf Verali Parambil, Saranya Sasi Mohan, Renjini Anil Sheeba, Sarika Puthiya Veettil, Dhanish Joseph, Nishad Kakkattummal, Afsal Bin Haleem Mp, Safeera Mayyeri, Thasneem Chemban Koyilott, Nasiya Nalakath, Samuel Thavamani B, Famila Rani J, Aruna Periyasamy, Chellappa V Rajesh, Rameswari Shanmugam, Marimuthu Poornima, Tina Raju, Roshni E R, Sirajudheen Mukriyan Kallungal, Lekshmi Ms Panicker, Saranya K G, Shilpa V P,
Volume 21, Issue 3 (9-2024)
Abstract

Biogenic synthesis of papain-conjugated copper metallic Nanoparticles and their antibacterial and antifungal activities Papain metallic conjugated nanoparticles (Papain-CuNPs) were synthesised using Papain and CuSO4.5H2O. Papain-CuNPs were characterized using UV-visible spectroscopy, FT-IR, HR-TEM, XRD, FE-SEM, zeta potential, and a zeta sizer. The antibacterial activity of papain-CuNPs against human infectious microorganisms (Citrobacter spp, Pseudomonas aeruginosa and Candida albicans) was investigated. The mechanism of action of papain-CuNPs was evaluated using FE-SEM and HRTM. UV spectroscopy confirmed the plasma resonance (SPR) at 679 nm, which indicated the formation of papain-CuNPs. The FT-IR spectrum absorbance peaks at 3927, 3865, 3842, 3363, 2978, and 2900 cm-1 indicate the presence of O-H and N-H of the secondary amine, and peaks at 1643 and 1572 cm-1 represent C=O functional groups in Papain-CuNPs. EDAX analysis confirmed the presence of copper in the papain-CuNPs. The zeta potential (-42.6 mV) and zeta size (99.66 d. nm) confirmed the stability and size of the nanoparticles. XRD confirmed the crystalline nature of the papain-CuNPs. FE-SEM and HRTM showed an oval structure, and the nano particles' 16.71244–34.84793 nm. The synthesized papain-NPs showed significant antibacterial activity against clinical P. aeruginosa (15 mm). MIC 125 µg/ml) showed bactericidal activity against P. aeruginosa and the mechanism of action of Papain-NPs was confirmed using an electron microscope by observing cell damage and cell shrinking. Papain-CuNPs have significant antibacterial activity and are thus used in the treatment of P. aeruginosa infections
Tumelo Moloi, Thywill Cephas Dzogbewu, Maina Maringa, Amos Muiruri,
Volume 21, Issue 3 (9-2024)
Abstract

The stability of microstructure at high temperatures is necessary for many applications. This paper presents investigations on the effect of changes in temperature on the microstructures of additively manufactured Ti6Al4V(ELI) alloy, as a prelude to high temperature fatigue testing of the material. In the present study, a Direct Metal Laser Sintering (DMLS) EOSINT M290 was used to additively manufacture test samples. Produced samples were stress relieved and half of these were then annealed at high temperatures. The samples were then heated from room temperature to various temperatures, held there for three hours and thereafter, cooled slowly in the air to room temperature. During tensile testing, the specimens was heated up to the intended test temperature and held there for 30 minutes, and then tensile loads applied to the specimens till fracture. Metallographic samples were then prepared for examination of their microstructures both at the fracture surfaces and away from them. The obtained results showed that changes in temperature do have effects on the microstructure and mechanical properties of Ti6Al4V(ELI) alloy. It is concluded in the paper that changes in temperature will affect the fatigue properties of the alloy.

Page 2 from 2     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb