Showing 167 results for Tic
Fathi Brioua, Chouaib Daoudi,
Volume 21, Issue 2 (6-2024)
Abstract
We have modeled theoretical incident photon-to-current electricity (IPCE) action spectra of poly(3-hexylthiophene) (P3HT) and [6,6]-Phenyl C61 butyric acid methyl ester active layer bulk-heterojunction. By the two-dimensional optical model of a multilayer system based on the structure of Glass substrate / SiO2 /ITO/ PEDOT: PSS /P3HT: PCBM(1:1)/Ca/Al, the optical responses of the device have been computed for different photoactive layer and Ca layer thicknesses to found an optimal structure which allows obtaining the maximum absorption localized in the active layer and high device performance. The electric field intensity, energy dissipation, generation rate, and IPCE have been computed to enhance the device's performance. The finite element method executes the simulation under an incident intensity of 100 mW/cm2 of the 1.5 AM illumination. It was found that the optimum structure is achieved by a 180 nm photoactive layer and 5 nm Ca layer thicknesses.
Farah Zulkifli,
Volume 21, Issue 2 (6-2024)
Abstract
Researchers are increasingly focusing on green synthesis methods for silver nanoparticles due to their cost-effectiveness and reduced environmental impact. In this study, we utilized an edible bird's nest (EBN), a valuable economic resource, as the primary material for synthesizing silver nanoparticles using only water as the solvent. Metabolite profiling of the EBN extract was conducted using LC-QTOF-MS in positive mode (ESI+), revealing the presence of lipids, glycosides, peptides, polysaccharides, and disaccharides. Upon the addition of silver nitrate to the aqueous EBN extract, noticeable color changes from transparent to brown indicated the successful formation of AgNPs. Subsequent characterization of these silver nanoparticles involved UV-Visible spectroscopy, which revealed an absorption peak at 421 nm. Further characterization was carried out using FESEM, ATR-FTIR spectroscopy, and EDX analysis. The involvement of phenolic agents, proteins, and amino acids in reducing the silver particles was confirmed. The synthesized nanoparticles exhibited a spherical shape, and a particle size ranging from 10 to 20 nm. The presence of elemental silver was confirmed by a strong, intense peak around 3 keV in the EDX spectrum. To assess their potential, the antibacterial properties of the silver nanoparticles against Escherichia coli and Staphylococcus aureus were evaluated using the agar diffusion method.
Ramin Dehghani, Seyed Mojtaba Zebarjad,
Volume 21, Issue 3 (9-2024)
Abstract
Acrylic resins are one of the most important thermoplastic resins used in various industries due to their significant properties. However, they are inherently brittle and addition plasticizers to them is very common. In this study, role of both Polyethylene Glycol (PEG) and Triacetin on the mechanical properties of acrylic resin have been investigated. To do so tensile test, bending and wear tests have been performed. To achieve the optimal mixture of plasticizers, a tensile test has been carried out, and the best percentage of the mixture has been determined. Subsequently, bending and wear tests were conducted, which showed a significant increase in the bending strength of the acrylic resin after the addition of plasticizers. Furthermore, it was found that the abrasion mechanism of the resin was significantly altered compared to its pure state.
Dewi Qurrota A'yuni, Hadiantono Hadiantono, Velny Velny, Agus Subagio, Moh. Djaeni, Nandang Mufti,
Volume 21, Issue 3 (9-2024)
Abstract
Rice husk carbon by-product from the industrial combustion is a promising source to produce a vast amount of activated carbon adsorbent. This research prepared rice husk-activated carbon adsorbent by varying the concentration of potassium hydroxide solution (5, 10, 15, 20 % w/v) and activation time (2, 4, 6, 8 hours). Fourier-transform infrared spectral characterization (FTIR) indicated a significant effect before and after activation, especially the presence of hydroxyl groups. Based on the iodine adsorption, the specific surface area of the produced-activated carbon was approximately 615 m2/g. Experimental results showed that increasing potassium hydroxide concentration and activation time increases the water vapor adsorption capacity of the activated carbon. Compared with the rice husk carbon, the KOH-activated carbon enhanced the water vapor adsorption capacity to 931%. In the adsorption observation, changing the temperature from 15 to 27 ℃ caused a higher water vapor uptake onto the activated carbon. Two adsorption kinetics (pseudo-first- and pseudo-second-order models) were used to evaluate the adsorption mechanism. This research found that rice husk-activated carbon performed a higher water vapor adsorption capacity than other adsorbents (silica gel, zeolite, and commercially activated carbon).
Muddukrishnaiah Kotakonda, Sajisha V.s, Aiswarya G, Safeela Nasrin Pakkiyan, Najamol A Alungal, Mayoora Kiliyankandi K, Divya Thekke Kareth, Naheeda Ashraf Verali Parambil, Saranya Sasi Mohan, Renjini Anil Sheeba, Sarika Puthiya Veettil, Dhanish Joseph, Nishad Kakkattummal, Afsal Bin Haleem Mp, Safeera Mayyeri, Thasneem Chemban Koyilott, Nasiya Nalakath, Samuel Thavamani B, Famila Rani J, Aruna Periyasamy, Chellappa V Rajesh, Rameswari Shanmugam, Marimuthu Poornima, Tina Raju, Roshni E R, Sirajudheen Mukriyan Kallungal, Lekshmi Ms Panicker, Saranya K G, Shilpa V P,
Volume 21, Issue 3 (9-2024)
Abstract
Biogenic synthesis of papain-conjugated copper metallic Nanoparticles and their antibacterial and antifungal activities Papain metallic conjugated nanoparticles (Papain-CuNPs) were synthesised using Papain and CuSO4.5H2O. Papain-CuNPs were characterized using UV-visible spectroscopy, FT-IR, HR-TEM, XRD, FE-SEM, zeta potential, and a zeta sizer. The antibacterial activity of papain-CuNPs against human infectious microorganisms (Citrobacter spp, Pseudomonas aeruginosa and Candida albicans) was investigated. The mechanism of action of papain-CuNPs was evaluated using FE-SEM and HRTM. UV spectroscopy confirmed the plasma resonance (SPR) at 679 nm, which indicated the formation of papain-CuNPs. The FT-IR spectrum absorbance peaks at 3927, 3865, 3842, 3363, 2978, and 2900 cm-1 indicate the presence of O-H and N-H of the secondary amine, and peaks at 1643 and 1572 cm-1 represent C=O functional groups in Papain-CuNPs. EDAX analysis confirmed the presence of copper in the papain-CuNPs. The zeta potential (-42.6 mV) and zeta size (99.66 d. nm) confirmed the stability and size of the nanoparticles. XRD confirmed the crystalline nature of the papain-CuNPs. FE-SEM and HRTM showed an oval structure, and the nano particles' 16.71244–34.84793 nm. The synthesized papain-NPs showed significant antibacterial activity against clinical P. aeruginosa (15 mm). MIC 125 µg/ml) showed bactericidal activity against P. aeruginosa and the mechanism of action of Papain-NPs was confirmed using an electron microscope by observing cell damage and cell shrinking. Papain-CuNPs have significant antibacterial activity and are thus used in the treatment of P. aeruginosa infections
Ahmad Ostovari Moghaddam, Olga Zaitseva, Sergey Uporov, Rahele Fereidonnejad, Dmitry Mikhailov, Nataliya Shaburova, Evgeny Trofimov,
Volume 21, Issue 3 (9-2024)
Abstract
High entropy intermetallic compounds (HEICs) are an interesting class of materials combining the properties of multicomponent solid solutions and the ordered superlattices in a single material. In this work, microstructural and magnetic properties of (CoCuFeMnNi)Al, (CoCuFeMnNi)Zn3, (FeCoMnNiCr)3Sn2, (FeCoNiMn)3Sn2 and Cu3(InSnSbGaGe) HEICs fabricated by induction melting are studied. The magnetic properties of the HEICs was determined mainly by the nature of the magnetic momentum of the constituent elements. (CoCuFeMnNi)Al and (CoCuFeMnNi)Zn3 displayed ferromagnetic behavior at 5 K, while indicated linear dependency of magnetization vs. magnetic (i.e. paramagnetic or antiferromagnetic state) at 300 K. The magnetization of (FeCoMnNiCr)3Sn2, (FeCoNiMn)3Sn2 and Cu3(InSnSbGaGe) HEICs at 300 K exhibited a nearly linear dependency to magnetic field. Among all the investigated samples, (CoCuFeMnNi)Al exhibited the best magnetic properties with a saturation magnetization of about Ms = 6.5 emu/g and a coercivity of about Hc = 100 Oe.
Umadevi Prasanna, Vijaya Kumar Kambila, Krishna Jyothi Nadella,
Volume 21, Issue 4 (12-2024)
Abstract
The composite solid polymer electrolyte films were prepared by doping nano-sized Fe2O3 particles on PVB (Polyvinyl Butyral) complexed with NaNO3 salt by solution casting technique. FTIR, XRD, and SEM methods characterized these electrolyte films. The Fourier Transform Infrared Spectroscopy and X-ray diffraction methods reveal the structural and complexation changes occurring in the electrolytes. The surface morphology of the electrolyte film was examined using the SEM (Scanning Electron Microscope) technique. The PVB+NaNO3+Fe2O3(70:30:3%) electrolyte shows a moderate ionic conductivity of 2.51×10−5 S cm−1 at ambient temperature (303 K). AC impedance spectroscopic analysis evaluates the ionic conductivity of the produced polymer electrolyte. Wagner's polarisation technique was applied to study the charge transport characteristics in the electrolyte films. The investigation revealed that ions constituted the majority of the transport carriers. An Open Circuit Voltage (OCV) of 2.0V and a Short Circuit Current (SCC) of 0.8 mA were found in the discharge characteristics data for the cell constructed with the polymer electrolyte sample.