Showing 375 results for Co
K. Ghanbari Ahari,
Volume 5, Issue 1 (3-2008)
Abstract
Abstract: Thermodynamic computational packages MTDATA and FactSage have been used to
carry out calculations on the variation with temperature of the phases precipitated on cooling in
both oxidising and reducing conditions of a typical ladle slag composition, in the temperature
range 1700 - 900°C. The current coverage of the databases associated with the computational
packages is discussed in relation to their application to slag - refractory interaction and the
validity of the results is compared with some relevant experimental data and phase equilibrium
studies
M. Kazemi Pour, S. Sharafi,
Volume 5, Issue 1 (3-2008)
Abstract
Abstract: Hardfacing is one of the most useful and economical ways to increase the service life of
components subjected to abrasive wear. Iron based hardfacing alloys have long been considered
as candidate coatings for wear-resistant applications in industry. In the present work two layer of
Fe-34Cr-4.5C%wt hardfacing alloy was deposited on ASTM A36 carbon steel plates by SMAW
method. The microstructure consists of large primary and eutectic M7C3 carbides, metastable
austenite and small amount of secondary carbides. The microstructure was analyzed by optical
and scanning electron microscopes. In the same condition of size, shape, distribution and volume
fraction of carbides the as-welded matrix changed to martensite, tempered martensite and ferrite
by heat treatment processes. The wear resistance was measured by pin-on-disk method under loads
of 5, 10 and 20N and for sliding distance of 1500m. The results showed that the as-welded sample
with austenitic matrix has the most and the ferritic matrix specimen has the least wear resistance.
The predominate mechanisms for mass losses were determined to be micro-cutting, microploughing.
C. Dehghanian, Y. Mirabolfathi Nejad,
Volume 5, Issue 1 (3-2008)
Abstract
Abstract: Despite having a number of advantages, reinforced concrete can suffer rebar corrosion
in high–chloride media, resulting in failure of reinforced concrete structures. In this research the
corrosion inhibition capability of the mixture of calcium and ammonium nitrate of steel rebar
corrosion was investigated in the simulated concrete pore solution. Cyclic polarization and
Electrochemical Impedance Spectroscopy (EIS) techniques were applied on steel concrete pore
solution containing 2 weight percent sodium chloride (NaCl). Results show that such mixtures had
higher inhibition efficiency than calcium nitrate alone. The optimum concentration of the inhibitor
mixture was determined to be 45 mgr/lit.
A. Allahverdi, E. Najafi Kani, S. Esmaeilpoor,
Volume 5, Issue 2 (6-2008)
Abstract
Abstract: The use of alkali-activated cementitious materials especially over the past decades has
significantly been increased. The goal of this research is to investigate the effects of silica modulus
and alkali concentration on alkali-activation of blast-furnace slag. In this research, the most
important physical characteristics of cementitious systems, i.e. the 28-day compressive strength
and final setting time, were studied by changing influencing parameters such as silica modulus,
i.e. SiO2/Na2O, (0.44, 0.52, 0.60, and 0.68) and Na2O concentration (4, 6, 8 and 10% by weight of
dry binder) at a constant water-to-dry binder ratio of 0.25. Final setting time of the studied
systems varies in the range between 55-386 minutes. The obtained results show that systems cured
at an atmosphere of more than 95% relative humidity at room temperature exhibit relatively high
28-day compressive strengths up to 107 MPa.
A. Moosavi, A. Aghaei,
Volume 5, Issue 2 (6-2008)
Abstract
Abstract: Auto-ignited gel combustion process has been used for producing a red hematite-zircon
based pigment. The combustible mixtures contained the metal nitrates and citric acid as oxidizers
and fuel, respectively. Sodium silicate (water glass) was used as silica source for producing zircon
phase. X-Ray Diffractometery, Electron Microscopy and Simultaneous Thermal Analysis were used
for characterization of reactions happened in the resulted dried gel during its heat-treatment.
L* a* b* color parameters were measured by the CIE (Commission International de I'Eclairage)
colorimetric method. This research has showed that solution combustion was unable to produce
coral pigment as the end product of combustion without the need for any further heat treatment
process.
M. Divandari,, H. Arabi, H. Ghasemi Mianaei,
Volume 5, Issue 3 (9-2008)
Abstract
Abstract: Thermal fatigue is a stochastic process often showing considerable scatter even in
controlled environments. Due to complexity of thermal fatigue, there is no a complete analytical
solution for predicting the effect of this property on the life of various components, subjected to
severe thermal fluctuations. Among these components, one can mention car cylinder, cylinder head
and piston which bear damages due to thermal fatigue. All these components are usually produced
by casting techniques. In order to comprehend and compare the thermal fatigue resistance of cast
Al alloys 356 and 413, this research was designed and performed. For this purpose, several
samples in the form of disc were cast from the two alloys in sand mould. The microstructures of the
cast samples were studied by light microscopy in order to choose the samples with the least
amounts of defects for thermal fatigue tests. The results of thermal fatigue tests showed that the
nucleation of microcracks in Al-356 alloy occurred at shorter time relative to those occurred in Al-
413 alloy under the same test conditions. In addition, the density of micro-cracks in Al-356 alloy
was more than that of Al-413 alloy. The results of fractography on 356 alloy indicated that the
cracks were generally nucleated from inter-dendritic shrinkage porosities and occasionally from
the interface of silicon particles with the matrix. The growth of these micro cracks was along the
dendrite arms. Fractography of 413 alloy fracture surfaces showed that nucleation of microcracks
was often associated with silicon particles.
H. Naffakh,, M. Shamanian, F. Ashrafizadeh,
Volume 5, Issue 3 (9-2008)
Abstract
Abstract: The investigation is carried out to characterize welding of AISI 310 austenitic stainless
steel to Inconel 657 nickel-chromium superalloy. The welds were produced using four types of
filler materials: the nickel-based corresponding to Inconel 82, Inconel A, Inconel 617 and
austenitic stainless steel 310. This paper describes the effects of aging treatment on the joint. The
comparative evaluation was based on microstructural features and estimation of mechanical
properties. While Inconel A exhibited highest thermal stability and mechanical properties
(hardness and ultimate strength), Inconel 82 weld metal also showed good thermal stability and
mechanical properties. On the other hand, welds produced with Inconel 617 and 310 SS filler
materials showed weak thermal stability and failed in the weld metals. It is therefore concluded
that for the joint between Inconel 657 and 310 stainless steel, Inconel A and Inconel 82 filler
materials offered the best compromises, respectively.
M. Ghalambaz, M. Shahmiri,
Volume 5, Issue 3 (9-2008)
Abstract
Abstract: Cooling slope-casting processing is a relatively new technique to produce semisolid cast
feedstock for the thixoforming process. Simple equipment, ease of operation, and low processing
costs are the main advantages of this process in comparison with existing processes such as
mechanical stirring, electromagnetic stirring, etc. The processing parameters of cooling slope
casting are length, angle and the material of the inclined plate and their combinations, which
usually affect the micro structural evolutions of the primary solid phase.
In order to clarify the effect of the processing parameters on the evolution of the particle size,
based on experimental investigation, Artificial Neural Network (ANN) was applied to predict the
primary silicon crystals (PSCs) size of semisolid cast ingot via a cooling slope casting process of
Al-20%(wt.%) Si alloy.
The results demonstrated that the ANN, with 2 hidden layers and topology (4, 3), could predict the
primary particle size with a high accuracy of 94%. The sensitivity analysis also revealed that
material of the cooling slope had the largest effect on particle size.
M. Keyanpour-Rad, S. Keyanpour-Rad,
Volume 5, Issue 3 (9-2008)
Abstract
Abstract: A novel dust free alginate impression material was formulated and prepared, comprising
an alginate polyvinylpyrrolidone and tetraflouroethylene resins, a mixture of liquid paraffin and
dimethylpolysiloxane oil as the dust generation controlling agents and processed diatomaceous
earth filler which was obtained from Iranian ore. No dusting was detected during the mixing of the
powder and the conventional properties of the impression material, like working and setting times
and compressive strength were in the range of the required specifications for alginate dental
impressions. The compressive strength was measured to be 2.6 times of the minimum requirement
for such fast setting impressions.
M. Farhani,, M. Soltanieh, M. R. Aboutalebi,
Volume 5, Issue 3 (9-2008)
Abstract
Abstract: Dissolution and recovery of Mn-Al compacts with and without a chloride flux was
studied by taking samples from the melt after addition of the compact. Events occurring after the
addition of the compacts into the melt were studied using water quenched specimens after holding
them for a specified time in molten state. The cross sections of these specimens were characterized
by SEM as well as optical imaging. The results showed that an optimized amount of flux (10 to
15%wt. in this research) considerably decreases the time to reach more than 90% recovery in
comparison with non-fluxed compacts. The flux caused the intermetallic forming reactions to be
started considerably sooner in fluxed compacts in comparison with the non-fluxed compact.
Consequently, the incubation time decreased from about 180 seconds for non-fluxed compacts to
less than 3 seconds for compacts with 10%wt. flux.
M. Shahmiri, S. Murphy,
Volume 5, Issue 4 (12-2008)
Abstract
Abstract: The microstructural features of the early stage of ordering of the intermetallic compound Pt2FeCu have been
examined using optical and transmission electron microscopy in conjunction with X-ray diffraction technique. It was
found that the compound has similar morphological alteration to that of FePt in which the ordering cannot be
suppressed by rapid quenching.
The early stage of ordering transformation was initiated at temperatures above the critical value of 1178 oC, by a
homogeneous nucleation of the intermediate short range ordered particles and ultra rapid directional-induced
heterogeneous growth (burst type). As the result of these combined mechanisms, twin –related ordered domains have
been formed which in turn minimize the strains produced by ordering reaction in polycrystalline material. The
individual grain was divided up by different sizes of twin-related ordered domain bonded with {101} habit planes.
M. Ghassemi Kakroudi,
Volume 5, Issue 4 (12-2008)
Abstract
Abstract: Refractory materials containing cordierite (2MgO.2Al2O3.5SiO2) and mullite (3Al2O3.2SiO2) are used as
support in furnaces, because of their low thermal expansion properties which confer them a very good ability to
thermal shock resistance. Composed of two phases presenting very different CTE (1.5–3×10-6 for cordierite and
4–6×10-6 K-1 for mullite), these materials can develop damage during thermal cycling due to internal stresses.
The resulting network of microcracks is well known to improved thermal shock resistance of materials, since it usually
involves a significant decrease in their elastic properties. This paper is devoted to the characterisation of the damage
generated by this CTE mismatch, thanks to the application of a specific ultrasonic device at high temperature.
S. Kianfar,, S. H. Seyedein, M. R.aboutalebi,
Volume 5, Issue 4 (12-2008)
Abstract
Abstract: The horizontal continuous casting process has received a significant attention for near net shape casting of
non ferrous metals and alloys. Numerical Simulation has been widely used for process design and optimization of
continuous casting process.
In the present study, a 3-dimensional heat flow model was developed to simulate the heat transfer and solidification in
a horizontal billet continuous casting system in which the air gap formation and its effect on heat extraction rate from
solidifying billet was also considered. In order to test the developed model, it was run to simulate the heat transfer
and solidification for an industrial billet caster. The predicted temperature distribution within the mold and billet was
compared with those measured on the industrial caster in which a good agreement was obtained.
Finally, parametric studies were carried out by validated model to evaluate the effects of different parameters on
solidification profile and temperature distribution within the model brass billet. The microstructure of cast billet was
analyzed to determine the secondary dendrite arm spacing (SDAS) under different cooling conditions. Based on
measured SDAS and predicted solidification rate a correlation between SDAS and cooling rate was proposed for
continuously cast brass billet.
H. Shahmir, M. Nili Ahmadabadi, F. Naghdi,
Volume 5, Issue 4 (12-2008)
Abstract
Abstract: In the present study the effect of thermomechanical treatment (cold work and annealing) on the
transformation behavior of NiTi shape memory alloys was studied. Differential scanning calorimetry was used to
determine transformation temperature and its relation to precipitates and defects. Three alloys including Ti-50.3at.%
Ni, Ti-50.5at.% Ni (reclamated orthodontic wires) and 50.6at.% Ni alloy were annealed at 673 K and 773 K for 30
and 60 min after 15% cold rolling. It was found that the transformation characteristics of these alloys are sensitive to
annealing treatment and composition. The temperature range of transformation is broadened during cold working and
after subsequent annealing, the intermediate phase was appeared. The peaks become sharper and close together on
each cooling and heating cycle with increasing annealing temperature and time
J. Saaedi, H. Arabi, Sh. Mirdamadi, Th. W. Coyle,
Volume 5, Issue 4 (12-2008)
Abstract
Abstract: Two different coating microstructures of Ni-50Cr alloy were obtained on a stainless steel substrate by
changing combustion characteristics of a high velocity oxy-fuel (HVOF) process and the size distribution of feed
powder during coating process. Use of the finer feed powder and leaner fuel in oxygen/fuel ratio (i.e. using a ratio
much less than stoichiometric ratio) led to formation of an extremely dense coating with high oxide content. Heat
treating of this coating at 650ºC for 4 hours caused the formation of an intermetallic sigma phase having Cr7Ni3
stoichiometry. Formation of this phase has been reported occasionally in thin films not in thermal spray coatings, as
reported for the first time in this research. In addition no sigma phase was detected in the HVOF as-deposited coating
with low oxide content after heat treatment of the samples. Therefore, due to the limited number of papers available in
the subject of formation of phase in either Ni-Cr bulk alloys or coatings, it is considered appropriate to show up a
case in this field. In this work, the formation of sigma phase in Ni-50Cr coating deposited by HVOF technique and
heat treated at 650ºC was discussed and then the coating was characterized.
A.nouri, Sh.kheirandish, H. Saghafian,
Volume 5, Issue 4 (12-2008)
Abstract
Abstract: In the current work, the strain hardening behavior of dual-phase steels with different silicon content (0.34-
2.26 Wt. %) was examined using the modified Crussard-Jaoul analysis. It was shown that these dual-phase steels
deform in two stages over a uniform strain range. Each stage exhibited a different strain hardening exponent varying
with silicon content. At the first stage, work hardening exponent remind significantly constant, while during the second
stage, it decreased with increasing silicon content from 0.34% to 1.51% and then increased for the higher silicon
contents (1.51% to 2.26%). It was found that the strain hardening behavior of these steels was predominantly affected
by the volume fraction of martensite at low silicon contet and the ferrite strengthening induced by silicon at the higher
silicon content. The effect of silicon content on the volume fraction of martensite and tensile properties were also
considered.
S.h.r. Fatemi Nayeri, J. Vahdati Khaki, M. R. Aboutalebi,
Volume 6, Issue 1 (3-2009)
Abstract
Abstract:A combination of mechanical activation and Differential Thermal Analysis (DTA) together with X-Ray
Diffraction (XRD), and various microstractural characterization techniques were used to evaluate the starting reaction
in the combustion synthesis of TiC-Al2O3 composite in TiO2-Al-C system. The mechanical activation was performed
on the mixtures of two components of TiO2/Al, Al/C and TiO2/C and then the third component was added according
to the stoichiometric reaction for 3TiC+2Al2O3 composite formation. The powder mixtures were heated up to 1450 °C
under Argon atmosphere at a heating rate of 10 °C/min. The combustion synthesis temperature was observed to
decrease from 962 °C to 649 °C after milling of TiO2/Al mixture for 16 hr. On the contrary, the mechanical activation
of Al/C and TiO2/C mixtures for 16 hr made the reaction temperature increase to 995 °C and 1024 °C, respectively.
The decrease in reaction temperature as a result of milling the TiO2/Al mixture could be due to an increase of TiO2
and Al interface area as confirmed by TEM micrographs and XRD patterns of milled powder mixture. In addition, DTA
experiments showed that for the sample in which TiO2 and Al were mechanically activated the reaction occurred at
the temperature even lower than that of Al melting point.
S.r. Allahkaram, R. Shamani,
Volume 6, Issue 1 (3-2009)
Abstract
Abstract: Due to the expansion of high voltage Alternating Current (AC) power transmission lines and cathodically
protected buried pipelines, it is becoming more and more difficult to construct them with enough safe distances
between them. Thus, the pipelines are frequently exposed to induced AC interferences, which result in perturbation of
Cathodic Protection (CP) due to AC corrosion. To study the above criterion, an experimental set up was used with
coupons exposed to simulated soil solutions, while under both CP and AC induced condition for which an AC+DC
power supply was utilized. The experiments were carried out in several simulated soil solutions corresponding to
several soil samples collected from various regions along a buried pipeline with overhead parallel high voltage power
transmission line. The results indicated that AC corrosion depends strongly on the composition of the soil.
I. Ebrahimzadeh, Gh.h. Akbari,
Volume 6, Issue 1 (3-2009)
Abstract
Abstract: Horizontal continuous casting is widely used to produce semi-finished and finished metallic products.
Homogeneity in metallurgical characteristics and mechanical properties in such products is of importance. In the
present work microstructure and mechanical properties of a horizontal continuous cast pipe have been studied.
Microstructural features were investigated by an optical microscope equipped with image analyzer and SEM was used
to characterize precipitates. Tensile behavior, impact strength and hardness variations were the mechanical properties
which were studied. Results showed that microstructure and mechanical properties had diversities in different parts of
the pipe and distinct differences were observed between upper and lower parts of the pipe. A meaningful correlation
was found in microstructure and mechanical properties in different parts of the component.
S.r. Allahkaram, R. Shamani,
Volume 6, Issue 2 (6-2009)
Abstract
Abstract: The risks of alternating current (AC) corrosion and overprotection increasingly demand new criteria for
cathodically protected pipelines. To assess the risk of AC corrosion, new cathodic protection (CP) criteria have been
proposed based on DC/AC current densities measurements using coupons. The monitoring system designed for this
project was based on the instant-off method, with steel coupons simulating coating defects on a buried pipeline. The
problems associated with the instantaneous off-potential measurements have been attributed to a non-sufficient time
resolution. In present study, it has been possible to determine the de-polarisation of steel coupon within a few
milliseconds after disconnecting the coupon from the DC/AC power source, by increasing data acquisition rate. For
this, a monitoring system was developed in order to measure the IR-free potential together with the DC/AC current
densities. The monitoring system was utilized for both laboratory experiments and site survey to study the mechanism
and the condition of AC corrosion, its mitigation and more importantly to define new CP criteria.