M. Khosravi Saghezchi, R. Ajami, M. Biazar Markie, H. Sarpoolaky,
Volume 12, Issue 4 (12-2015)
Abstract
A comparing study on formation and microstructure features of aluminum titanate is investigated through both solid-state and sol-gel processes. Aluminum titanate formed by firing at 1350ºC and 1450ºC for 4h in solid-state process. In the sol-gel process formation of submicron sized particles is followed by addition of sucrose into the transparent sol. XRD analysis was confirmed the formation of aluminum titanate at 1400ºC in lower duration of calcination (3h) without any additives in the sol-gel process. In this work 2wt% MgO is added to the samples as the additive for forming acceleration of aluminum titanate. The influence of MgO addition and heat treatment are studied on phase formation and microstructure development of aluminum titanate in both procedures. Additive optimizes aluminum titanate formation at lower temperatures (1300-1350ºC). Phase and microstructure studies of Mg containing samples optimally show significance in aluminum titanate formation.
Najwa Gouitaa, Lamcharfi Taj-Dine, Abdi Farid , Ahjyaje Fatima Zahra,
Volume 18, Issue 3 (9-2021)
Abstract
In this study we have synthesis the Zr substituted BaTi0.80Fe0.20O3 ceramics at different content of Zr from x=0.00 to 0.10 by using the solid-state route. The room temperature X-ray diffraction results confirmed the coexistence of the two tetragonal and hexagonal phases for x ≤ 0.050 of Zr content. While above 0.050 the hexagonal phase disappears in benefit of tetragonal phase. The Raman results confirmed the formation of these phases obtained with XRD. The scanning electron micrographs consist of both spherical and straight grain forms for x=0.000 to 0.075, and only spherical grain form for x=0.100 attributed to the tetragonal phase. Also, the grain size increases accompanied with a decrease in density of ceramics with increasing Zr content up to 0.050 then decreases accompanied with an increase in density. Detailed studies of dielectric permittivity measurement have provided a presence of two anomalies Te and TR-O at different temperatures, with a relaxation phenomenon and diffuse behavior which is very important for ceramic at x=0.075 of Zr content. The dielectric permittivity values of the two anomalies of Zr substituted BaTi0.80Fe0.20O3 ceramics increase with increase of Zr content and the dielectric loss is minimal at x=0.100 of Zr content. The conductivity increases with the increasing of Zr substitution from 0.025 to 0.075 levels while for x = 0.100 the dielectric conductivity decreases. And the Cole-Cole analysis indicates a negative thermal resistivity coefficient (NTCR) behavior of these materials and an ideal Debye-type behavior.